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Abstract

Individual-based data sets tracking organisms over space and time are fundamental to answering broad questions in

ecology and evolution. A ‘permanent’ genetic tag circumvents a need to invasively mark or tag animals, especially if

there are little phenotypic differences among individuals. However, genetic tracking of individuals does not come

without its limits; correctly matching genotypes and error rates associated with laboratory work can make it difficult

to parse out matched individuals. In addition, defining a sampling design that effectively matches individuals in the

wild can be a challenge for researchers. Here, we combine the two objectives of defining sampling design and reduc-

ing genotyping error through an efficient Python-based computer-modelling program, WISEPAIR. We describe the

methods used to develop the computer program and assess its effectiveness through three empirical data sets, with

and without reference genotypes. Our results show that WISEPAIR outperformed similar genotype matching programs

using previously published from reference genotype data of diurnal poison frogs (Allobates femoralis) and without-

reference (faecal) genotype sample data sets of harbour seals (Phoca vitulina) and Eurasian otters (Lutra lutra). In

addition, due to limited sampling effort in the harbour seal data, we present optimal sampling designs for future

projects. WISEPAIR allows for minimal sacrifice in the available methods as it incorporates sample rerun error data,

allelic pairwise comparisons and probabilistic simulations to determine matching thresholds. Our program is the

lone tool available to researchers to define parameters a priori for genetic tracking studies.
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Introduction

Tracking individuals in the wild is fundamental to

answering broad questions relating to population struc-

ture, trophic interactions, behavioural patterns and life

history events (Clutton-Brock & Sheldon 2010). Individ-

ual-based data sets can elucidate intraspecific differences

pertaining to trophic and foraging ecology (Newsome

et al. 2009; Arnould et al. 2011; H€uckst€adt et al. 2012),

population dynamics (Vindenes et al. 2008) and disease

ecology (Johnson et al. 2009), highlighting important pat-

terns and processes dictating interactions among species

(Bolnick et al. 2003; Cianciaruso et al. 2009). A longitudi-

nal study is one method for investigating individual dif-

ferences that may affect the broader patterns and

processes, such as those described above (Bolnick et al.

2002). Historically, researchers have used nongenetic

tags to track individuals, such as human-made coloured

bands or skin brands employed in marine mammal stud-

ies (Merrick et al. 1996; Hazen et al. 2012; Walker et al.

2012), or photo-identification through individual mor-

phological marks on the animal (Stevick et al. 2001;

Speed et al. 2007). However, these traditional methods

have limitations such as ‘tag loss’ where the tag is no

longer on the species. In addition to loss of tags,

researchers need to continuously observe individuals in

the field, and, unless accompanied with supplementary

data, the lack of information beyond simple individual

identification limits the questions that can be investi-

gated. A ‘permanent’ genetic tag potentially circumvents

a need to invasively tag animals and may be the only fea-

sible method if there are little phenotypic differences

among individuals (Palsbøll 1999). These genetic tags

can arise from direct sources (blood and tissue) or from

noninvasive sources such as hair, faeces, sloughed or

shed skin, urine and saliva (Waits & Paetkau 2005). A

genetic tag fulfils many important characteristics neces-

sary to track individuals effectively including the follow-

ing: universal applicability, potential noninvasiveness,
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no significant loss of tags, lack of ambiguity among indi-

viduals and rapid matching of tags once the method is

established (Palsbøll 1999). Genetic tags therefore allow

for collecting robust longitudinal data sets. However, the

use of genetic tags also requires special attention to

experimental design.

Major considerations regarding genetic tracking

include logistics and costs. Both the sampling (number

of samples/bouts) and genotyping (laboratory work/

genotyping error) necessary to track individuals force

researchers to make trade-offs in the design of their pro-

ject (Hoban 2014). We define sampling design as the

number of samples, bouts and genetic markers used to

appropriately address a research question. Sampling

design has been previously highlighted as an important

component to improving accuracy in noninvasive popu-

lation studies (Marucco et al. 2011). However, studies

rarely mention sampling designs for genetic tracking

and typical results are of population size estimation via

noninvasive recaptures, which require fewer resamples

than longitudinal tracking of individuals.

Generally, there are two objectives in the design and a

posteriori evaluation of a genetic tracking study: the like-

lihood of resampling an individual in a population and

estimating the effects of genotyping error on resampling

confidence. These questions can be investigated by

developing optimal sampling designs to ensure that a

given study can obtain enough samples in the field to

resample individuals. However, genotyping error, which

is usually taxa and sample-quality specific (Taberlet &

Luikart 1999), leads to discrepancies between genotypes

of two distinct samples from the same individual. The

second objective is therefore to determine whether or not

the genotyping error rate observed in a study will inhibit

the ability to identify those resamples. One way to

address the second objective is determining through

rerun PCR samples or statistical error rates in programs

such as GIMLET (Vali�ere 2002), GEMINI (Vali�ere et al. 2002),

CERVUS (Kalinowski et al. 2007), PEDANT (Johnson & Hay-

don 2007) or DROPOUT (McKelvey & Schwartz 2005;

Schwartz et al. 2006), where to assign a threshold in alle-

lic differences for individual identification. While these

objectives have previously been separated (determining

resamples with error and designing optimal sampling

designs for resampling individuals), they are inextricably

linked when it comes to genetically tracking individuals.

Developing a successful genetic tracking study thus

requires considering both genotyping error and sam-

pling design. There are few tools available to researchers

to define parameters a priori for noninvasive genetic

tracking. We thus propose a hybrid approach that can

integrate both repeated PCRs and a computer-based

approach for addressing genotyping error when match-

ing individual samples. We combine these two objects

and developed WISEPAIR, an experimental design model

for individual-based ecological questions that simulates

genetic tracking and genotyping error. Our goals were to

develop a method to genetically track individuals and to

develop an a priori optimal sampling design to assist in

effective experimental designs. We describe our methods

used to develop the computer program and assess its

effectiveness through three empirical data sets. One data

set came from Ringler et al. (2014) and had reference

genotypes of diurnal poison frogs (Allobates femoralis).

The two without-reference genotype data sets are from

noninvasive faecal samples of harbour seals (Phoca vit-

ulina) (Rothstein 2015) and Eurasian otter (Lutra lutra)

(Lampa et al. 2015). The source code is available at:

https://github.com/McGlock/WisePair.

Methods

Finding matches through virtual genetic tagging – a
probability model

A probability model was created to address the follow-

ing main objectives: (i) simulate sampling designs from

virtual populations, (ii) determine resamples of individu-

als through allelic pairwise comparisons and (iii) opti-

mize sampling designs for future project development.

Our program consists of three main scripts: beanbag.py,

wisepair.py and optimagic.py. The beanbag.py script is

specifically designed to build virtual individual geno-

types of a population to be used in simulated sampling.

This design is based on user-supplied criteria such as

number of individuals in the population, number of loci

and allelic frequencies. In addition, this script incorpo-

rates genotyping error rates during sampling. The sec-

ond script, wisepair.py, was created to determine the

number of resamples within a specified data set (real or

virtual) through allelic pairwise comparisons. wisepair.py

determines the number of resamples within a virtual

data set, the number of resamples within an actual data

set using specified threshold simulations, estimates the

number of errors for resamples and determines whether

resamples can be distinguished from non-resamples. The

final script, optimagic.py, utilizes outputs from both bean-

bag.py and wisepair.py to develop optimal sampling

designs for individual-based studies. beanbag.py and

wisepair.py were then used to produce a threshold ‘score’

with which we could compare samples to a field data set

and subsequent simulations in optimagic.py. The follow-

ing describes the methods for each script within the

WISEPAIR suite:

beanbag.py. beanbag.py creates a population with simu-

lated genotypes, followed by running a virtual sampling

season on the population. It accepts a JSON file that
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contains number of loci (L), number of alleles (A) and

allelic frequencies (AHz) for respective alleles. From this

JSON file, it creates a simulated population for user-spe-

cified number of individuals. This virtual population is

used to construct genotypes for each individual using

the provided AHz and a Pythonic implementation of the

Mersenne Twister, a pseudo-random number generator

(Matsumoto & Nishimura 1998). For each L, the follow-

ing processes are run: (i) an A is randomly drawn, (ii) its

AHz is compared to a continuously randomized proba-

bility value (CRPV) from 0 to 1, (iii) a particular A is

assigned to an L when AHz is ≥ the probability value,

(iv) these three steps are then repeated for all loci for

each individual until the virtual population is completely

built. From this virtual population, the script simulates a

sampling season with user-provided criteria, such as

number of bouts and samples per bout. For each bout,

the samples are randomly chosen, without replacement,

from the available individuals until the number of sam-

ples for that bout is met. The population list is refreshed

for each bout.

To accurately address genetic sampling, the model

incorporates simulations of allelic dropout (ADO) and

false allele (FA) error rates for the genotypes sampled.

Empirical error rates and user-specified error rates are

used to simulate genotyping error, where we incorporate

ADO and FA into the genotype for each individual

using the PEDANT software suite (Johnson & Haydon

2007). PEDANT per allele error rates are compared to a

CRPV from 0 to 1. If the error rate is ≥ CRPV, then an

error occurs for that allele; FA generated first, followed

by ADO. It is important to note that the script places an

‘unknown allele’ for FA as it cannot determine what

allele would actually be substituted, unlike a false allele

in a real data set. For matching purposes, the FA is trea-

ted as another allele and not ignored when matching

genotypes. This treatment ignores potential false positive

matches; however, these matches would be exceedingly

rare. While this model accepts a virtual determination of

error rates, it can incorporate previously determined

rates by the user. Following these steps, the sampling

season is saved as a comma-separated variable (.csv)

format. This standard output is used in the wisepair.py

scoring algorithm. The beanbag.py script can be used for

implementation and simulation of virtual populations

and sampling needed when no data are available or

included in iterative runs of the wisepair.py script to

determine threshold values for determining resamples

in actual data sets.

wisepair.py. The second script, wisepair.py, either imports

the standard output of beanbag.py or user-supplied data

in.csv format. From these imports, a full list of all pair-

wise comparisons for every sample is assembled. The

pairwise list is run through a scoring function that com-

pares genotypes of each pair and returns a similarity

score. Initially, a raw similarity score (RSS) is deter-

mined, which is the sum of allelic differences of each

pairwise comparison where a lower score indicated

higher similarity. A corrected similarity score (CSS) is

computed to account for variable number of loci being

included (as some samples may have missing data for

certain loci – for our ‘without-reference’ data set, we

removed samples with >25% missing loci) in the scoring

of each pair (CSS = RSS/[# of loci used]). Each CSS is

normalized (NCSS), for graphical clarity, by subtracting

the overall CSS mean and then dividing by the difference

of the maximum CSS and minimum CSS:

NCSS ¼ CSS� CSS
� �

CSSmax � CSSmin
:

When analysing simulated data from beanbag.py, a

‘virtsim’ ID code is included. This code allows for error-

free identification of individuals, even if ADO or FA

introduces discrepancies between identical genotypes.

Using these IDs, wisepair.py builds a resampled threshold

range for NCSS. The threshold range is established from

the lower limit of a confidence interval around the mean

of the NCSS for the unpaired comparison and the upper

limit of a confidence interval around the mean for the

resampled comparisons (�5% of NCSS for resampling

which is 95% CI for our analyses). These ranges can be

applied later to empirical data sets to identify resampled

individuals. The simulated NCSS are plotted onto his-

tograms for visual inspection of the frequency distribu-

tion of resampled individuals and distinct, newly

sampled individuals. The wisepair.py and beanbag.py

scripts are used for both simulations in the following

script and determining resample thresholds for a

project’s data set (ex. Figs 1–3).

optimagic.py. The third and final script used in the pro-

gram is an optimization script for both threshold values

and sampling designs. This script effectively optimizes

potential sampling designs by iteratively running bean-

bag.py and wisepair.py. The possible variables that can be

optimized are number of bouts, samples per bout, counts

of resampled individuals and count of times an individ-

ual is resampled over a season. Given all the specified

variables, optimagic.py performs simulations of all possi-

ble combinations of values or ranges using the previous

scripts. beanbag.py and wisepair.py iterate each design and

determine the number of resamples and non-resamples

using the threshold model. Following these design simu-

lations, all scoring data are parsed and resampled indi-

viduals are counted. These data are stored in two

possible.csv files. If the simulation meets, the specified
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resampled minimum and the mean number of times an

individual is resampled then data for that sampling

design are saved within the acceptable sampling file. If

either of the criteria were not met for the simulations,

then the sample designs failed and are placed in the

unacceptable sampling file. These data can then be used

to determine the best sample design for a given range of

criteria (ex. Fig. 4a–c). The following sections explain

how we tested these methods on empirical data sets with

and without-reference genotypes.

Fig. 2 Threshold histogram for harbour seal data set. In contrast to Fig. 1, the yellow polygon shows overlap of the upper and lower

bounds for each confidence interval. Ambiguous or questionable resamples fall within the yellow polygon. Based on 1000 iterative sim-

ulations to determine threshold values for resampled individuals, the bounds of the corrected score were included in the histogram of

pairwise. Based on the lower bound threshold, the simulations determined that there were two pairs of samples that were identified as

resampled individuals (1) Pv14-28 and Pv14-43 and (2) Pv14-31 and Pv14-33, which are shown in the second graph of number of

individual resampled.

Fig. 1 Threshold histogram for tadpole data set. Simulations were iterated 100 times to determine threshold values. Blue bins represent

nonresampled pairwise comparisons and red bins represent potential matched pairs. Green polygon identifies those pairwise compar-

isons that are overlapping comparisons with green indicating that the lower and upper bounds do not overlap (red dotted = lower, blue

dotted = upper). All known matches were binned to the left of the red dotted lower threshold (0.56). The blue-dotted line signifies the

upper limit of potential resamples. Second histogram shows example of detailed matches, specifically for the reduced data of juvenile-

adults.
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With-reference genotype sample set

With-reference genotype samples refer to data sets that

have available, known genotypes for individuals. Hav-

ing with-reference genotypes allows for researchers to

confidently match individuals to this reference as

opposed to without-reference genotypes (typical in non-

invasive studies) that leaves uncertainty to matching

pairs of genotypes. The major differences in these data

sets are the assumption that the with reference genotypes

are error-free and without-reference are error-prone

(Pompanon et al. 2005; Johnson & Haydon 2007). For our

study, we applied data from Ringler et al. (2014), which

consisted of tissue sampled 1800 tadpoles of diurnal poi-

son frogs (Allobates femoralis) that were released into 20

artificial pools, followed by a second survey yielding 42

juvenile samples, with a final sampling of 36 males and

31 females. Individuals were matched with photograph

ID from both juveniles and adult stages which ensured

that genotypes matched photo ID results (juvenile to

adult). Through these three sampling bouts, all samples

were genotyped with 14 microsatellite loci (see Ringler

et al. 2014). This data set was separated into two main

groups: reduced and full. The full data set included all

potential matches from tadpoles to juveniles to adult life

stages (trios, n = 20), while the reduced set only included

pairs from juveniles to adults (pairs, n = 76) (Ringler

et al. 2014).

Without-reference genotype sample set

We collected 46 scat samples from harbour seals in three

sampling periods during January–March 2014 (Jan.

n = 21, Feb. n = 12, Mar. n = 13) from a single haul out

site in Cowichan Bay, Vancouver Island, British Colum-

bia (Rothstein 2015). The haul out is comprised of float-

ing logs (log booms) that are available to harbour seals

year-round (Cottrell 1995; Baird 2001). From the 46 scat

samples collected, we successfully genotyped 32 samples

through at least seven of nine microsatellite loci used.

We applied loci, which were initially developed in tissue

and blood, and tested them on scat samples (Burg 1996;

Gemmell et al. 1997; Davis et al. 2002). We used a ran-

dom number generator to identify 20% of the total sam-

ples size for reamplification and repeated genotyping.

Rerun samples were analysed with PEDANT, which used a

maximum-likelihood estimation of allelic dropout

(ADO) and false allele (FA) rates when there is an

absence of reference data (a common limitation with

unknown individuals or in noninvasive genetic sam-

pling) (Johnson & Haydon 2007). In addition, all samples

were sexed using a ZFX/ZFY protein qPCR assay

adapted from Matejusov�a et al. (2013), developed specifi-

cally for harbour seals. All samples were run with posi-

tive controls of known male and female scat samples

acquired from captive harbour seals at Vancouver

Aquarium in Vancouver, BC and Point Defiance Zoo &

Aquarium, Tacoma, WA (Rothstein 2015).

Our final data set was of Eurasian otter (Lutra lutra)

faecal samples from Lampa et al. (2015). This data set

included 778 multilocus microsatellite (7) genotypes over

a six-year period. From 2006 to 2012 (missing 2009 year),

the number of genotyped samples was 121, 134, 96, 130,

138 and 159, respectively. In addition to the complete

genotype, the authors used a Lut-SRY sex determination

marker that helped in identification of individuals. Each

genotype has both a sample ID and otter ID to describe

matching genotypes. Due to high error rates during PCR

amplification (genotyping error rates over all years were

48.9%, ADO = 45.1%, FA = 3.8%), Lampa et al. (2015)

employed a multitubed approach with at least five

amplification repeats to determine a consensus genotype.

Based on their data set, they found 84 distinct individu-

als of the 778 genotypes.

Incorporating genotyping data into scripts

We used the WISEPAIR suite to determine the number of indi-

viduals resampled within the respective data sets. For the

wisepair.py script, we used error rates determined in PEDANT

for harbour seal data and published error rates for Ringler

et al. (2014) and Lampa et al. (2015). In order to effectively

and confidently identify resampled individuals, each data

Fig. 3 Threshold histogram for Lampa et al. (2015) data set.

Comparable to Fig. 2, positioning of the blue- and red-dotted

lines as well as the yellow polygon shows overlap in matching

thresholds for pairwise comparisons. Based on 100 iterative sim-

ulations, the single red bin represents potential matched indi-

viduals with blue bins representing non-resamples. All known

matches were binned to the left of the blue-dotted line. Second

histogram shows all resamples for all pairwise comparisons

with the WISEPAIR iterative model. Removing redundancies, the

number of individuals resampled is 65, with five ‘false’ resam-

ples due to matching opposite sexes. The 19 singleton individual

genotypes are not classified as resamples within the model.
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set was compared through thresholds from wisepair.py to

simulated designs under different conditions. These condi-

tional simulations in optimagic.py included a population

based on our data-observed allele frequencies, number of

alleles and estimated error rates. optimagic.pywas used as a

means to iteratively run beanbag.py and wisepair.py for com-

parison purposes to the data sets.

For the Ringler et al.’s (2014) data, we used simula-

tions that matched the published sampling design (1800

tadpoles, 42 juveniles and 67 adults) and iteratively ran

100 simulations to determine threshold values, similar to

the harbour seal data. The difference in these simulations

was that Ringler et al. (2014) had variable samples sizes

while the harbour seal, and otter data were based on a

set number of samples per bout. In addition, as per pub-

lished methods (Ringler et al. 2014), matches were deter-

mined for both a reduced data set (juvenile–adults) and
full data set (trios: tadpole–juveniles–adults).

The harbour seal data were used with 1000 iterations

of a virtual population of 100 individuals, 150 total sam-

ple size and five bouts. For Lampa et al. (2015) data, we

used 100 iterations of 21 individuals, with sampling

design matching the number of genotyped samples dur-

ing six bouts. The number of individuals was based on

(a) (b)

(c)

Fig. 4 optimagic.py optimal sampling schemes for a population of 100 individuals with a random 50% absent at any given bout. Crite-

ria included a sampling effort of 20–30 scats for each visit for 20–25 bouts. (A) Depicts scheme of minimum of five individuals resam-

pled, (B) depicts scheme of minimum of 10 individuals resampled and (C) depicts schemed of 15 individuals resampled. Dotted line

represents this minimum number of resampled individuals sampled at least four times. Each scheme was iterated three times. Data

points above dotted lines represent schemes that met both criteria of resampled counts (RSC) and number of individuals resampled

(RS), in green. Yellow circles only met one of the criteria and red dots represent schemes that met none of the conditions. Schemes that

met the input criteria ranged in sample sizes of 440–750 total samples.
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Lampa et al. (2015) capture–mark–recapture population

estimates. For both data sets, iteration simulations were

averaged from corrected threshold values for each itera-

tion and compiled to determine threshold values for

identifying resampled individuals in the data sets.

Optimizing for future projects using optimagic.py

The final simulations determined the best sampling

design for future individual-based genetic tracking stud-

ies, specifically for the haul out at Cowichan Bay. A high-

frequency simulation was used based on the assumption

that researchers would want to resample individuals

more frequently (at least 4–6 times per individual) than

in the harbour seal data set we presented. Due to permit

restrictions for our collections, we were unable to use a

high-frequency sampling design such as the one in this

simulation. However, this circumstance provided an

opportunity to demonstrate the effectiveness of

optimagic.py as an experimental design tool. From a pop-

ulation of 100 individuals at Cowichan Bay (Olesiuk

2009), the optimagic.py script was run to fit parameters

that would include a variety of potential designs. We

determined designs that matched incremental number of

individuals resampled: 5, 10 and 15+ individuals. In

addition to the high-frequency sampling parameters, we

used a population of 100 individuals with an estimate

that a random 50% of individuals are absent from the

haul out at any given time. Therefore, a random 50 indi-

viduals of the population are sampled without replace-

ment during each bout. While harbour seals can be

extremely variable in their haul out patterns based on life

history factors (Brown & Mate 1983; Yochem et al. 1987;

Huber et al. 2001) and can be locally variable (Thompson

1989), a modest estimate of 50% of seals hauled out is

consistent with previously observed estimates of harbour

seal behaviour (Yochem et al. 1987). Using this scenario,

we targeted the minimum number of individuals that

would be resampled based on the designs for individuals

sampled ≥4 times. In addition, each design was itera-

tively run three times to give minimal stability to the

output.

Results

With-reference genotype sample set

As highlighted above, with-reference genotypes refer to

data sets that have a library of known genotypes or indi-

viduals to compare to sampled data. This type of data is

especially important as it assumes to be comprised of

error-free reference genotypes for matching purposes.

Through model statistics described in the methods sec-

tion, the main threshold scores range was 0.00 in the

lower bounds and 0.57 in the upper bounds (Fig. 1).

From this range, we identified 22 distinct matches

between juveniles and adults and 67 distinct matches

between tadpoles and adults. The additional two

matches were false positives as they were matching

adults-to-adults – which would be separate individuals.

From the full data set, we identified 20 trio matches from

tadpole–juvenile–adult and 20/20 for juvenile-adults.

For comparison purposes, the results are added to the

published table in Ringler et al. (2014) and shown in

Table 1. Compared to other available programs, WISEPAIR

outperformed all programs tested in the Ringler et al.

(2014) study. Specifically, as compared to the next most

accurate program (ML-RELATE), WISEPAIR correctly identi-

fied all tadpoles to adult matches, which outperformed

previous comparisons (Table 1). However, our results

were the only program to identify matches within

sampling bouts; suggesting that in some cases, it could

overestimate matches without a relatedness or sex deter-

mination control.

Table 1 Extended table from Ringler et al. (2014) with WISEPAIR results

Program

Reduced data set Full data set

Correct a-error b-error Correct a-error b-error Trios Adult-Tp

IDENTITY 4/20 0 16 n/a n/a n/a n/a n/a

GENECAP 19/20 0 1 19/20 0 1 12/20 46/67

GENALEX 20/20 0 0 n/a n/a n/a n/a n/a

ALLELEMATCH 19/20 0 1 19/20 0 1 11/20 36/67

KINGROUP 20/20 0 0 20/20 0 0 19/20 64/67

ML-RELATE 20/20 0 0 20/20 0 0 20/20 61/67

WISEPAIR 22/20* 2 0 20/20 0 0 20/20 67/67

WISEPAIR under a reduced data set (only juveniles and adults) identified 22/20 compared to other matching programs with a-error and
b-error. With full data set, juveniles and adults resulted in 20/20 with trios (tadpole–juvenile–adults) and 67/67 for adult–tadpole.
*There were 22/20 matches with the excess being different adults matching – potentially due to relatedness.
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Without-reference genotype sample set

Based on the simulated sampling design for the harbour

seal data, the threshold range was �0.542 in the lower

bounds and �0.173 in the upper bounds. This threshold

value included two sets that were identified as two

recaptures (Pv14-28/Pv14-43 and Pv14-31/Pv14-33)

(Fig. 2). Based on this pairwise match, we were able to

match two sets of samples, identifying a recapture of two

individuals. These two samples stood apart from the

data set due to the use of an ‘outside’ control marker in

the sex determination (see Methods). The threshold val-

ues could become more obscure if there were no control

markers in the study.

For the Lampa et al. (2015) data set, the threshold

range was �0.321 in the lower bounds and �0.172 in the

upper bounds (Fig. 3). Using the pairwise resampling

data and matching to otter ID, we identified 65 individu-

als that were resampled at least one time, and 19 addi-

tional individuals that were singleton genotypes. In

addition to the 84 matches, we had five matched sam-

ples, based on genotype, that were different sexes (Male–
Female or vice versa). This mismatched result suggests

that these were false matches and most likely related

individuals (Table S1, Supporting information).

optimagic.py Results

Due to the limited number of individual harbour seals

that were resampled, it was informative to determine the

optimum sampling design for that system. Based on our

three scenarios (number of individuals resampled: 5, 10

and 15 individuals, n = 100, 20–25 sampling bouts and

20–30 samples per bout), there were 58 designs that fit

for five individuals resampled, 23 designs for 10 individ-

uals and only one design fit for 15 individuals. The opti-

mum designs for five individuals ranged from a

minimum of 440 samples over 22 bouts, to 750 samples

over 25 bouts (30 samples per bout) (Fig. 4a). For the

minimum optimum design, there were a total of 17 indi-

viduals that were resampled, with three that were

resampled ≥4 times (mean count of resamples per indi-

vidual = 4.97). For 750 samples over 25 bouts, samples

included 27 individuals that were resampled at least

once, with 11 individuals resampled ≥4 (mean count of

re-samples per individual = 6.1). For 10 resampled indi-

viduals, designs ranged from 520 to 750 samples, with 20

and 25 bouts, respectively (Fig. 4b). With a minimum of

22 individuals resampled and three individuals resam-

pled ≥4 times (mean count of resamples per individ-

ual = 5.23). The maximum design included 27

individuals resampled, with ~4 individuals resampled

≥4 times (mean count of resamples per individual = 5.9).

The final design of 15 individuals only had one optimum

of 750 samples over 25 bouts with 27 individuals resam-

pled (four individuals resampled ≥4 times; mean count

of resamples per individual = 4.1) (Fig. 4c). There were a

number of designs that met the minimum number of

resampled individuals but did not meet the number of

times those individuals would be resampled (≥4) high-
lighted by yellow points in Fig. 4a–c.

Discussion

While genetic tracking has been a promising technique

for researchers in wildlife science, the specific laboratory

challenges and few studies comparing different

approaches leave opportunities for methodological

advancement (Beja-Pereira et al. 2009). With increased

availability of genetic technologies and the need for a

well-planned experimental design (Schwartz & Monfort

2008, p. 240; Hoban 2014), a study that developed a new

method for matching individuals and simulating experi-

mental design for individual tracking is pertinent for the

progression of this research. This is the first study to

develop a combined experimental design and pairwise

matching software that is specifically written for the

genetic tracking of individuals in individual-based stud-

ies and is universally applicable to any taxon.

Our study matched correctly the reduced and trio

data sets of Ringler et al. (2014) which tracked diurnal

poison frogs (Allobates femoralis) through three life stages,

testing the effectiveness of available genetic matching

programs (Fig. 1, Table 1). However, for juvenile-adults,

there were 22 matches compared to the published 20

matches. From the list of matches, our program matched

adults-to-adults in the data sets. One explanation for this

overestimation of matches is the lack of a relatedness

function within the program. While there is most likely

relatedness among individuals in a population, a study

investigating mating systems in the diurnal poison frog

showed that 82.4% of matings were between unrelated

individuals, 15.2% between half-sibs and only 2.4%

between full-sibs (Ringler et al. 2012). Another explana-

tion for these mismatches is based on the confidence

intervals during simulations. More stringent confidence

intervals (>95%) may have lowered our b-error for juve-
nile-adult reduced data set. However, WISEPAIR was inten-

tionally run without regard to metadata of samples (sex

and age class) to test overall performance. Therefore, the

overestimation could be due to WISEPAIR’s nondiscrimina-

tory pairwise comparisons between juveniles and adult

genotypes. This distinction could be advantageous when

researchers have metadata on individual samples, such

as in Ringler et al. (2014), to appropriately identify psue-

doreplicates versus resampled individuals. A feature

that corrects for relatedness would be an added benefit

to our analysis and could help elucidate the fine-scale
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differences between individuals for questions pertaining

to population substructure and mating systems.

For the trio matching (67/67) and adult-tadpole (20/

20) in the full data set, the results matched exactly the

published results of Ringler et al. (2014). This result high-

lights the ability of WISEPAIR to effectively handle large

data sets for pairwise comparison, an advantageous fea-

ture for researchers that want to apply high-frequency

sampling designs or large population sampling. As com-

pared to other programs used in Ringler et al. (2014),

WISEPAIR outperformed other comparable matching pro-

grams (Table 1). In addition, this result shows the

a/b-error mismatch observed in the reduced data set does

not appear to be a consistent problem of the software.

For Lampa et al. (2015), WISEPAIR correctly identified all

84 otter individuals. WISEPAIR identified 65 individuals that

were resampled at least once and 19 individuals that were

observed only one time (Table S1, Supporting information).

Comparable to the results of Ringler et al. (2014), we identi-

fied matches that had different sexes. This result again sup-

ports that overestimation could be based on relatedness,

but in this empirical case, the result is less ambiguous with

the addition of a sex marker. Out result is important as it

highlights WISEPAIR’s ability to handle lower quality data

based on high error rates – a variable that is especially rele-

vant when working with noninvasive samples.

In contrast, for our harbour seal data, the two

instances of resampled harbour seal individuals were

not sufficient for parsing individual differences within a

population. Previous studies have made recommenda-

tions for the number of samples needed in noninvasive

studies, with some advising the number of faecal sam-

ples exceeding 2.5- to threefold the number of animals

expected to be sampled (Solberg et al. 2006; Marucco

et al. 2011). This number of faecal samples is based on

the expectation that 20–30% of all samples sample are

unable to be genotyped. With this argument, the number

of samples needed to effectively track 100 harbour seals

at Cowichan Bay would be 250–300 samples. However,

suggested samples size is usually based on capture–
recapture studies for population estimation where it is

not necessary to have multiple recaptures per individual.

In addition, these estimates are solely based on sample

failure estimates in laboratory work and not with regard

to genotyping error in subsequent postlaboratory analy-

ses. This general estimation is not consistent with the

optimagic.py output that recommended across all designs

440–750 samples to effectively track 5–15 individuals in a

population of 100 seals at Cowichan Bay (assuming 50%

are absent at any given sampling period). The

optimagic.py provides a robust tool for planning studies

requiring longitudinal sample design; a feature that was

not previously available for researchers. As highlighted

in the introduction, much of the previous literature uses

assumptions for sampling design that fail to incorporate

important facets of a noninvasive study, namely geno-

typing error which can affect a project’s ability to match

individual genotypes (Taberlet & Luikart 1999). While

optimagic.py provides an effective starting point for

researchers to determine how many samples they would

need to effectively track individuals, it is important to

note that models do not come without assumptions and

the results of our harbour seal data may not be the

definitive number of samples needed, especially with

only one rematched individual.

However, many pilot studies, such as the harbour seal

data, are integral parts to developing larger projects.

optimagic.py helps support future designs by incorporat-

ing criteria such as genotyping error, number of resam-

ples and number of times an individual will be

resampled that are important parameters for projects

attempting to genetically track individuals in the wild.

The ranges of optimagic.py optimal designs (see Results)

highlight the power of the model and the variety of

designs that can work for researchers in a given ques-

tion. The fluctuation optima are related to the combina-

tions of bouts and sample sizes that dictate changes to

whether or not it will meet an optimum. With the

pseudo-random nature of some of the algorithms as sta-

ted in the methods, there will be events in the simula-

tions that create fluctuations of optimal designs. The

advantage to optimagic.py is that researchers can choose

from the data set and rerun optimagic.py iteratively under

one design. This output could give better insights into

whether or not an individual design matches the research-

ers’ guidelines. For example, in our harbour seal study,

cost per sample was a concern due to logistics, and there-

fore, it may be advantageous to use the smallest sample

size possible from the optimagic.py results. With this

research limitation, the smallest samples size to ensure we

could resample at least the minimum of five individuals

effectively would be 440 samples over 22 bouts. It is impor-

tant to note that 20–30 visits to a haul out site could be

deemed invasive on harbour seals due to repeated harass-

ment (Suryan & Harvey 1999). While typically genetic

samples have been obtained through capturing an animal

(tissue and blood), scat still serves as a minimally invasive

option even with disturbing a haul out site.

There are some assumptions included in the pipeline

described that should be addressed in future studies.

One is the assumption that all samples are of the same

quality (for scat, freshness based on time since defeca-

tion). There has been some work performed to determine

the DNA degradation rates of scats in the field (Piggott

2005; Murphy et al. 2007; Brinkman et al. 2010). A recent

study investigating faecal deposition rates and DNA

degradation to optimize sampling design in Sonoran

pronghorn (Antilocapra americana sonoriensis) determined
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that a sampling interval of 4–7 days under summer con-

ditions proved most advantageous (Woodruff et al.

2014). However, these rates may be site or species speci-

fic and would be important for future studies with sam-

ples in other environment (such as marine) to assess the

per cent of degradation affecting the number of samples

needed. This assessment would allow optimagic.py to

appropriately buffer for these samples that may fail in

the field. However, if not applicable in the optimagic.py

program, future studies could plan to buffer for these

failed samples. While genotyping error is incorporated,

the failure rate of samples (i.e. number of missing data

points) would be an additional parameter that would

merit inclusion in future. Another assumption in this

study stated that a false allele would be treated as

another unique allele. In real data sets, a false allele can

range in base pair length, which can increase the number

of different false alleles present within a locus. For

instance, one locus in the harbour seal data set, Lc26, had

the highest false allele rate (0.25 false alleles per geno-

type). These false alleles differed from two base pairs up

to 16 base pairs, which incorporated six new alleles cate-

gorized as false alleles. In the current simulation, false

alleles present would be treated and represented as a sin-

gle error instance. This assumption can overinflate the

number of false alleles present and potentially hide

matching genotypes in a data set or simulation. How-

ever, a false allele leading to a false ‘positive’ match with

another individual in the population appears to be

highly unlikely.

While there are a multitude of questions that can be

answered with individual-level data, species-specific

methodological considerations are imperative to a suc-

cessful project. Genetic tracking studies can be especially

successful in species with some fidelity to a location

(haul outs, latrines, breeding grounds, etc.) provided an

adequate sampling design is in place. Our study effec-

tively developed a computer program tool that research-

ers can use for projects in individual genetic tracking by

optimizing sample size through incorporating expected

sampling population size, genetic error rates and sam-

pling with and without reference genotypes. Based on

cost and logistics, it is important that future studies iden-

tify the trade-offs among differing methods and apply

the most robust techniques and available tools to address

matching genotyping and errors associated. Neverthe-

less, our approach allowed for minimal sacrifice in the

available methods as it incorporated sample rerun error

data, allelic pairwise comparisons and probabilistic sim-

ulations to determine matching thresholds. Researchers

can expect to develop more robust data sets that capture

differences among individuals while addressing logisti-

cal and financial concern that can lead to prohibitive

sampling designs and analyses.
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