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Abstract 

 

 Understanding the effect of individual differences on trophic interactions of upper-level predators, 

which can have disproportionate effects on an ecosystem, is imperative for successful management of 

populations.  Marine mammals that prey on fish species of commercial and conservation importance are thus 

of particular interest.  However, quantitatively monitoring and evaluating the impact of marine mammals on 

the environment is challenging because it is difficult to observe, capture, and collect repeated samples of 

individuals.  Molecular genetic analysis of scat provides an inexpensive and feasible option to address these 

challenges.  I developed an innovative non-invasive method for re-sampling individual marine mammals by 

collecting harbor seal (Phoca vitulina) scat at a haul-out in Cowichan Bay, B.C.  I chose to study this species 

because it is the most abundant pinniped in the inland waters of the Pacific Northwest and a notable predator 

on fisheries stocks.  In addition, a Python-based computer program for experimental design, incorporating 

genotyping error, was created to determine the sampling schemes needed to genetically track individuals of any 

taxa with site fidelity.  My results demonstrate that non-invasive individual tracking via microsatellites can be 

successfully implemented in marine mammals.  Furthermore, the optimum sampling scheme to track 

individuals over a given time frame at the study site requires 690 samples over 23 bouts (30 samples per bout).  

These genetic-tracking and sampling scheme methodologies can be applied to help answer several biological 

questions including diet, relatedness, population structure and impacts on species of interest. 
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Introduction 

Data that track individuals in the wild are fundamental to answering broad questions such as those 

relating to population structure, trophic interactions, behavioral patterns, and life history events (Clutton-Brock 

& Sheldon 2010).  Especially with top predators that can have drastic effects on an ecosystem, understanding 

their dynamic roles and individual variation is of prime importance (Myers et al. 2007; Heithaus et al. 2008).  

Individual-based data sets can elucidate intraspecific differences in areas such as trophic and foraging ecology 

(Newsome et al. 2009; Arnould et al. 2011; Hückstädt et al. 2012), population dynamics (Vindenes et al. 2008), 

and disease ecology (Johnson et al. 2009), that may highlight important patterns and processes dictating 

interactions among species (Bolnick et al. 2003; Cianciaruso et al. 2009).  Individual variation in ecological traits 

has important implications because it can create variance in demographic parameters (Bolnick et al. 2011).  For 

example, in a study showing evidence of diet specialization in California sea otters (Enhydra lutris nereis), the use 

of resources by different individuals affects the demographics of energetic needs and habitat choice within the 

population (Estes et al. 2003).  Individual variation in diet can also be an important source of data for 

understanding broader processes such as food-web interactions and foraging strategies (Estes et al. 2003; 

Svanbäck & Persson 2004).  Although there are many examples of individual variation in a variety of taxa (see 

reveiw Bolnick et al. 2003), investigations as to how traits, such as diet, habitat selection, or foraging behavior, 

are distributed among individuals are still relatively unknown (Araújo et al. 2010).  Given this gap in knowledge 

recent studies have examined individual diet specialization in species such as southern elephant seals (Mirounga 

leonina) (Hückstädt et al. 2012), California sea otters (Estes et al. 2003), seabirds (Woo et al. 2008), and many 

other taxa (Pires et al. 2011).  In particular for marine systems, studies investigating diet and foraging strategies 

are of increasing importance as many of the predator-prey interactions involve species of conservation and 

commercial interest (Williams et al. 2011; Bowen & Lidgard 2013).  A possible method for researchers to 

investigate individual differences in trophic interactions is through longitudinal studies of individuals, which 

observe repeated instances of a niche trait, such as diet (Bolnick et al. 2002).  Yet, previous studies have not 

incorporated a method to efficiently track individuals and are subjected to labor intensive field observations 
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(Newsome et al. 2009)or through invasive capturing of individuals (Hückstädt et al. 2012), all of which can limit 

recaptures of individuals. 

Harbor seals (Phoca vitulina) highlight the importance of tracking individual variation in diet.  These 

upper-trophic level marine mammals are the most abundant pinniped species in the inland waters of the Pacific 

Northwest (Jeffries 2000) and a notable predator on fisheries stocks (Olesiuk 1993).  Despite their significant 

role in the ecosystem, we know little about the trophic interactions of harbor seals due to the difficulty in 

studying them (Harwood 1983; Gulland 1987; Bowen 1997; Morissette et al. 2012).  While harbor seals are 

typically regarded as generalist predators, their populations may actually be comprised of individuals with 

specialized diets (Lance et al. 2012; Bromaghin et al. 2013; Bjorland et al. Accepted).  This potential for 

specialization can have ramifications for understanding harbor seal influence on fish stocks and makes it 

necessary to develop a method to track individuals in the system.  However, previous approaches to collecting 

individualized data on marine mammals have usually required conducting expensive, invasive, and impractical 

manipulation experiments (Williams et al. 2004; Read 2008), such as stomach contents (Jansen et al. 2013) and 

tissue biopsies for fatty acid (Andersen et al. 2004) or stable isotope (Arnould et al. 2011) analyses.  The 

invasiveness of these methods leave researchers subjected to increased logistical concerns in capturing and 

handling individual animals and therefore limit the number of recaptures; an integral facet of longitudinal 

studies (Johnson 2002).  Given these methodological drawbacks, it has been difficult to study and track 

individual marine mammals effectively (Bowen 1997; Williams et al. 2004; Morissette et al. 2012). 

Non-invasive genetics methods in wildlife conservation and management provide a solution to the 

logistic concerns of studying individual variability in marine mammals.  Non-invasive genetics can be defined 

as gathering data without handling, capturing, or continuously observing a target species.  Due to the accelerated 

rate at which molecular methods have been developed, the accessibility and costs associated with these 

techniques have become a realistic option for biologists and provide a quantitative approach for individual and 

population monitoring (DeYoung & Honeycutt 2005; Waits & Paetkau 2005).  Specifically the affordability of 

techniques such as analyses of microsatellites—which are highly polymorphic markers among individuals—are 
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instrumental in addressing genetic drift, genetic variation, and relatedness within a target population (Selkoe & 

Toonen 2006; Ouborg et al. 2010; Guichoux et al. 2011).  Non-invasive genetic sampling has been applied to 

answer a variety of ecological questions, such as identifying the presence of rare or elusive species (Foote et al. 

2012), determining gender through sex-linked chromosomes (Reed et al. 1997), identifying diet items (Deagle et 

al. 2005; Deagle et al. 2007), and evaluating genetic diversity, population structure, and mating systems (Palsbøll 

et al. 1997; Garnier et al. 2001).  Non-invasive genetic sampling methods are able to obtain DNA samples from 

a variety of sources such as hair, feces, urine, skin, feathers, egg shells, and saliva.  Each sample from these 

sources contains genomic DNA (gDNA)(Waits & Paetkau 2005).  Due to their behavior of hauling-out on 

land, harbor seals afford an opportunity to obtain DNA from scat.  Hauling-out is a behavior commonly 

associated with pinnipeds that allows for periods of rest between foraging activities (Hoelzel & editors 2009, p 

197).  This resting behavior is advantageous for obtaining samples non-invasively; a method previously 

employed for individual identification (Reed et al. 1997) but yet to be applied for tracking individuals.  While 

obtaining scats from haul outs can be deemed a harassment of harbor seals, this is a less invasive means to 

collect genetic samples than through blood or tissue biopsies.  Historically, conventional tags tracking 

individuals have been human-made through colored bands or brands, or through individual morphological 

marks on the animal and using photo identification.  More recently however, there has been potential to use a 

“permanent” genetic tag to circumvent the need to capture animals or when there is little phenotypic differences 

among individuals.  A genetic tag fulfills many important characteristics necessary to track individuals 

effectively, including universal applicability, non-invasiveness, no significant loss of tags, lack of ambiguity 

among individuals, and rapid matching of tags once established (Palsbøll 1999).  Considering the likelihood of 

obtaining non-invasive samples from harbor seals through scat this species offers a suitable system to develop 

a method to track individuals. 

In the study of marine mammals non-invasive genetic sampling has been a promising technique 

employed to address ecological and evolutionary biological questions in different taxa such as Atlantic spotted 

dolphins (Stenella frontalisis) (Green et al. 2007), bottlenose dolphins (Tursiops truncatus) (Parsons 2001), killer 

whales (Orcinus orca) (Ayres et al. 2012), grey seals (Halichoeru grypus), harbor seals (Reed et al. 1997), and ringed 
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seals (Phoca hispida) (Swanson et al. 2006).  However, a method for tracking marine mammals genetically has 

only been established in humpback whales (Megaptera novaeangliae) (Palsbøll et al. 1997).  The lack of generic 

methods to genetically track individuals stems in large part from a necessity to use species-specific genetic 

markers (Selkoe & Toonen 2006) .  My study applied the available library of microsatellite markers to harbor 

seals previously developed only from tissue or blood samples and apply these markers to scat samples.  In 

addition to the need for developing species specific genetic markers, longitudinal non-invasive genetic tracking 

comes with a set of challenges that includes sampling logistics (number of samples needed to track multiple 

individuals), genotyping error associated with lab methods, and their combined effect in developing an efficient 

non-invasive genetic project. 

Major considerations regarding non-invasive genetic tracking include logistics and costs.  Both 

sampling (number of samples/bouts) and genotyping (lab work/genotyping error) necessary to track individuals 

force researchers to make trade-offs in the design of their project (Hoban 2014).  I define sampling design as 

the number of samples, bouts, and genetic markers used to appropriately address a research question.  Sampling 

design has been previously highlighted as an important component to improving accuracy in non-invasive 

population studies (Marucco et al. 2011).  However, most of the number of bouts and therein the number of 

samples collected for previous non-invasive studies were completed a posteriori because there were no defined 

sampling schemes and therefore researchers were subjected to continuous sampling (Lukacs & Burnham 2005; 

Marucco et al. 2011).  Few exceptions have specifically mentioned sampling schemes for non-invasive genetics 

(Solberg et al. 2006; Marucco et al. 2012), and these studies were specific for population-based questions, such 

as population size estimation via non-invasive recaptures, which require fewer re-samples than tracking 

individuals to determine estimates. 

In addition to sampling design, genotyping errors in identifying individuals are usually taxa-and sample 

quality specific and thus methodological generalizations can present serious challenges (Taberlet & Luikart 

1999).  Genotyping error is associated with allelic dropout (homozygote for a locus when a sample should be 

heterozygote) and false alleles (an incorrect allele identified due to artefacts from PCR) (Pompanon et al. 2005).  

One major concern that can dictate error rates is the amount of quality DNA available when using hairs, 
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feathers, or feces from animals.  Due to the indirect nature of the samples (as opposed to tissue or blood 

samples) the DNA within the samples is usually more degraded.  Degraded DNA may lead to increased error 

rates when genetically identifying individuals (Taberlet & Luikart 1999).  Studies have used a variety of ways to 

minimize these errors, such as repeatable PCR experiments to confidently genotype each individual (Taberlet 

et al. 1996; Garnier et al. 2001) and assessing these repeat PCRs through programs such as GIMLET (Valière 

2002) or GEMINI (Valière et al. 2002).  Conversely there are programs that use a statistically conservative 

approach route to minimize error, such as CERVUS (Kalinowski et al. 2007), PEDANT (Johnson & Haydon 

2007) and DROPOUT (McKelvey & Schwartz 2005; Schwartz et al. 2006).  This component to experimental 

design is vital to successfully identifying individuals, although all but PEDANT require potentially cost-

prohibitive repeated PCRs.  PEDANT is the lone option for applying data with no reference genotypes.  By 

using a maximum-likelihood algorithm the program is an advantage in studies that may lack resources to 

perform repeat PCRs on the entire data set (Johnson & Haydon 2007).  However PEDANT does not 

distinguish individuals as it is solely for estimating error.  Developing a successful non-invasive genetic study 

requires considering both genotyping error and sampling design. 

With number of samples and genotyping error being a critical component this study attempted to 

combine these factors through an efficient computer modelling program.  There are few tools available to 

researchers to define parameters a priori for non-invasive genetic tracking.  GEMINI (Valière et al. 2002), the 

only tool available for study design, is only applicable for repeated-PCR experiments and have yet to combine 

more cost efficient error estimates (as shown with the program PEDANT) with experimental design.  To date, 

no one has examined the study-design requirements for individual tracking to answer broader questions such 

as diet, resource use, or disease ecology.  I proposes a hybrid approach that integrates both repeated PCRs and 

a computer-based approach for addressing genotyping error when matching individual samples. 

Presented with a suitable system in harbor seals to track individuals and a lack of tools for researcher 

to appropriately design individual-based studies, I report the results of a study that developed an innovative 

non-invasive method to genetically track individual harbor seals.  By collecting harbor seal scat at a haul-out in 

Cowichan Bay, British Columbia, I successfully genotyped and sexed fecal samples using nine microsatellite 
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loci and ZFX/ZFY qPCR gender determination.  In addition, this study developed a Python-based 

experimental design model that simulates non-invasive genetic tracking and genotyping error by incorporating 

PEDANT specifically for individual-based ecological questions, thus assisting researchers as they develop 

future projects.  The Python model is available at: https://github.com/McGlock/WisePair.  My goals were to 

develop a method to genetically track individual harbor seals and to develop an a priori optimal sampling scheme 

to genetically track individuals of any taxa. 

Methods 

Sampling and DNA extraction 

I collected 46 scat samples from harbor seals in three sampling periods during January – March 2014 

(Jan. n=21, Feb. n = 12, Mar. n=13) from a single haul-out site in Cowichan Bay, Vancouver Island, British 

Columbia (Figure 1).  This site was an ideal candidate for the study due to its relative isolation in an estuarial 

bay and the relatively small (ca. 100 individuals) number of seals that actively use the site (Olesiuk 2009).  The 

haul-out is comprised of floating logs (log booms) that are available to harbor seals year-round (Cottrell 1995; 

Baird 2001).  During sampling trips, I opportunistically sampled harbor seal scats by fully surveying the log 

booms.  Scats were selected based on subjective freshness, whereupon the level of moisture of the scat was 

indicative of having been recently deposited.  Once a scat was identified as fresh, I swabbed approximately 75-

100% of the exterior of the scats with a sterile cotton-tipped applicator to target the visible exterior mucus 

(Rutledge et al. 2009).  After swabbing, cotton tips were stored in 2mL screw-cap vials with EtOH (95%) and 

at -20°C until gDNA extraction.  Collection of samples was conducted with or by Sheena Majewiski, Research 

Biologist at the Department of Fisheries and Oceans Canada, under “Licence to Study Marine Mammals for 

Research Purposes MML-003”. 

Once samples were ready for DNA extraction, the excess EtOH was drained from the 2mL vials and 

the samples were dried in a drying oven at 60° C until all EtOH had evaporated.  Due to the nature of swabbed 

samples, the majority of target DNA was epithelial cells and not scat matrix containing potential inhibitors.  

Therefore the use of a specialized stool extraction kit was deemed unnecessary.  Instead, samples were extracted 

https://github.com/McGlock/WisePair
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using a standard Qiagen DNeasy Blood and Tissue kit (Qiagen, Valencia, California).  I quantified total gDNA 

(μg/µL) using a NanoDrop 1000 Spectrophotometer (Thermo Scientific, Delaware, USA) and verified samples 

readings ≤10 μg/µL using a Qubit® 2.0 Fluorometer (Life Technologies, Valencia, California).  All samples 

≥10 μg/µL were then diluted to DNA concentrations of 10 μg/µL. 

Individual Genotyping 

Based on an available published library of over 20 microsatellite markers for harbor seals (Burg 1996; 

Gemmell et al. 1997; Davis et al. 2002) I identified nine microsatellite markers that were developed from tissue 

to apply to our samples.  To accomplish this identification I screened 18 potential markers; however, only, nine 

of them were positive for PCR amplification and used in this study: LW20, HI15, TBPv2, M11, SGPv10, Lc5, 

Lc26, Pv11, and BG.  The other 9 markers that were tested but insufficient for scat genotyping were: LW10, 

Lc6, HI16, Lc13, Pv3, Pv10, Hg6.1, Hg6.3, Hg8.9, SGPv11, and SGPv9.  The amount of markers used in the study 

was based on cost and time trade-offs, calculated probability of identity (PI) (Waits et al. 2001), the relative 

success in PCR amplification, and the interest in developing a method affordable to many researchers.  

Probability of identity is defined as the probability of obtaining identical genotypes given certain allele 

frequencies (Waits et al. 2001).  Specifically the probability of identity of full siblings (sib), which is the 

probability that two siblings would share identical loci; a more conservative probability estimate.  With the nine 

loci used in this study the probability of identity (sib) was 6.87 x 10-4 based on previously observed frequencies 

in past studies (Burg 1996; Davis et al. 2002; Hayes et al. 2006). 

PCR reactions were performed in 25μL volumes consisting of 2-3 μL of sample gDNA, either 15 μL 

of GoTaq® Colorless Master Mix (pH 8.5, 400μM dATP, dGTP, dCTP, dTTP and 3mM MgCl2) (Promega, 

Wisconsin, USA) or 15 µL of KAPA2G Robust PCR Kits [5X KAPA2G Buffer A, 5X KAPA2G Buffer B, 5X 

KAPA2G GC Buffer (all with Mg2+ at a 1X conc. of 1.5 mM) , 5X KAPA Enhancer 1 and extra MgCl2 (25 mM)] 

(Kapa Biosystems, Massachusetts, USA), 0.5-1 μL of forward and reverse primers,  and 6-7 μL of PCR grade 

water.  The conditions of the PCR reactions varied among different loci depending on amplification success 

(Table 1).  All PCRs were performed with a positive control of harbor seal skin blubber biopsies obtained from 
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Harriett Huber, NOAA National Marine Mammal Lab, Seattle, WA.  While these samples did not have known 

reference genotypes they were advantageous as a positive control through the nature of the sample, as tissue 

samples provide ample quality gDNA for microsatellite analysis as compared to scat.  This robust source of 

harbor seal DNA was an integral control to distinguish between issues pertaining to sample quality versus PCR-

based issues.  Samples that failed amplification when positive control amplified at locus signified that the sample 

was of poor quality.  Samples were amplified for each locus and amplification was verified on a 1% TBE agarose 

gel. 

After successful amplification, samples were purified for nucleotide sequencing using G-75 Sephadex 

columns and dried in a 96-well plate.  Gel electrophoresis bands were qualitatively analyzed for concentration 

dilutions of 1:1, 1:5, or 1:25 to be re-suspended in 15 μL of a 1:20 dilution of Liz-500 Applied Biosystems (ABI) 

size standard in formamide.  Amplified fragments were analyzed on an ABI Prism 3130XL Genetic Analyzer, 

and electropherograms were visually analyzed through ABI PeakScanner software to score alleles at each locus.  

Deviations from Hardy-Weinberg equilibrium and allele frequencies were determined using the program 

CERVUS; p-values were tested with Bonferroni correction (Kalinowski et al. 2007). 

Sex Determination 

To determine the sex of each sample, I used the qPCR assay from Matejusová et al. (2013) but only 

included controls of known samples and not the additional housekeeping gene (CytB). I ran all samples with 

positive controls of known male and female scat samples acquired from captive harbor seals at Vancouver 

Aquarium in Vancouver, BC and Point Defiance Zoo & Aquarium, Tacoma, WA. With known male and female 

scat samples I was able to confidently assign gender to field samples.  The qPCR assay utilizes a Taqman qPCR 

assay that targets the homologs of zinc finger protein on the X and Y chromosomes (ZFX and ZFY) specific 

for harbor seals.  The qPCR reaction consisted of 20 μL volumes of 1 μL of gDNA, 1 μL of TaqMan probe, 

10 μL of ABI Taqman gene expression master mix, and 8 μL of PCR grade water ( for primer sequences see 

Matejusová et al. 2013).  Cycling conditions consisted of one holding cycle (50°C for 2 min, 95°C for 10 min) 

followed by 60 cycles of denaturation and annealing/extension (95°C for 15 sec, 60°C for 1 min).  With these 
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known samples I confirmed sex determination through at least 4 consistent runs of Ct (cycle threshold) values.  

If there was ambiguity with these runs, I ran samples until I had at least 4 straight consistent results.  With these 

consistent minimums, expecting that scat samples would be of lower quality DNA, I did not accept runs with 

Ct values over 40, consistent with Matejusová et al. (2013).  However, I modified the original protocol by 

confirming male samples through positive amplification of ZFX and ZFY, as either present or absent, and 

confirmation by only accepting Ct values ≤40.  Female samples were confirmed similarly through positive 

amplification of ZFX and negative amplification of ZFY and confirmation by only accepting Ct values ≤40 for 

ZFX.  In addition to demonstrating the possibility of using scat for examining sex-specific ecological patterns, 

sex determination was also used as an additional control for individual identification.  A workflow chart has 

been included to highlight the major methodologies included in this study (Figure 2). 

Estimating Genotyping Error 

I used a random number generator to identify 20% of the total samples size for re-amplification and 

repeated genotyping.  This is a modification of the full multi-tube approach suggested by Taberlet et al. (1996), 

which advises at least seven re-runs per sample.  A multi-tubes approach can be costly and a less lab-intensive 

statistical approach can also provide a robust estimation (McKelvey & Schwartz 2004; Schwartz et al. 2006).  By 

only repeating a proportion of the samples (20% of total samples size), as suggested in a variety of reviews 

(Hoffman & Amos 2005; Pompanon et al. 2005),  I was able to apply the re-run samples to computer programs 

that estimate genotyping error.  Specifically, I used PEDANT, which applies a maximum likelihood estimation 

of allelic dropout (ADO) and false allele (FA) rates when there is an absence of reference data (typically with 

unknown individuals or in non-invasive genetic sampling) (Johnson & Haydon 2007). 

Finding Matches through Virtual Genetic Tagging – A Probability Model 

Generally, there are two objectives that researchers attempt to accomplish for genetically tracking 

individuals.  One objective is to determine how likely an individual will be re-sampled.  This question can be 

investigated by developing optimal sampling schemes to ensure, based on probabilities, that a study will obtain 

enough samples in the field to re-sample individuals.  However, in genetic studies, researchers must also address 
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genotyping error, as it can lead to differences between genotypes of two distinct samples from the same 

individual.  The second objective is therefore to determine whether or not the genotyping error rate observed 

in a study will inhibit the ability to identify those re-samples.  One way to address this second objective is to 

determine, through re-run samples, where to assign a threshold in allelic differences for individual identification.  

While these objectives have previously been separated (determining re-samples with error and designing optimal 

sampling schemes for re-sampling individuals) they are inextricably linked when it comes to genetically tracking 

individuals. 

Therefore, a Python-based computational probability model was created to effectively address the 

following main objectives: 1) simulate sampling schemes from virtual populations, 2) determine re-samples of 

individuals through allelic pairwise comparisons, and 3) optimize sampling schemes for future project 

development.  The program consisted of three main scripts BEANBAG.py, WISEPAIR.py, and 

OPTIMAGIC.py (Figure 3).  The BEANBAG.py script was specifically designed to build virtual individual 

genotypes of a population to be used in simulated sampling.  This design was based on user-supplied criteria 

such as number of individuals in the population, number of loci, and allelic frequencies.  In addition, this script 

incorporated genotyping error rates during sampling.  The second script, WISEPAIR.py, was created to 

determine the number of re-samples within a specified data set (real or virtual) through allelic pairwise 

comparisons.  WISEPAIR.py determined the number of re-samples within a virtual data set, determines the 

number of re-samples within an actual data using specified threshold simulations, estimates the number of 

errors for re-samples, and determines whether re-samples can be distinguished from non-re-samples.  The final 

script, OTPIMAGIC.py, utilized outputs from both BEANBAG.py and WISEPAIR.py to develop optimal 

sampling designs for individual based studies.  The following paragraphs explain the processes of each script: 

BEANBAG.py 

BEANBAG.py created a population with simulated genotypes followed by running a virtual sampling 

season on the population.  It accepted a JSON file that contained number of loci (L), number of alleles (A), 

and allelic frequencies for respective alleles (AHz).  From this JSON file it created a simulated population for 
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user specified number of individuals.  This virtual population was used to construct genotypes for each 

individual using the provided AHz and a Pythonic implementation of the Mersenne Twister, a pseudo-random 

number generator (Matsumoto & Nishimura 1998).  For each L the following processes began: (1) an A was 

randomly drawn, (2) its AHz was compared to a continuously randomized probability value (CRPV) from 0-1, 

(3) a particular A was assigned to an L when AHz is ≥ the probability value, (4) these three steps were then 

repeated for all loci for each individual until the virtual population was completely built.  From this virtual 

population the script simulated a sampling season with user provided criteria, such as number of bouts and 

samples per bout.  For each bout, the samples were pseudo-randomly chosen, without replacement, from the 

available individuals until the number of samples for that bout is met.  The population list was refreshed for 

each bout. 

To accurately address genetic sampling, the model incorporated simulations of allelic dropout and false 

allele error rates for the genotypes sampled.  As described in the section estimating genotyping error, the model 

incorporated ADO and FA into the genotype for each individual using the PEDANT software suite (Johnson 

& Haydon 2007).  These data were converted into JSON format and used to simulate genotyping error.  

PEDANT per-allele error rates were compared to a CRPV from 0-1.  If the error rate was ≥ CRPV, then an 

error occurred for that allele; FA generated first, followed by ADO.  It is important to note that the script 

places an “unknown allele” in for FA as it cannot determine what allele would actually be substituted, unlike a 

false allele in a real data set.  For matching purposes the FA was treated as another allele and not ignored when 

matching genotypes.  While this model accepted a virtual determination of error rates, it can incorporate 

previously determined rates by the user.  Following these steps the sampling season is saved as a comma-

separated variable (.csv) format.  This standard output was used in the WISEPAIR.py scoring algorithm.  The 

BEANBAG.py script was created for implementation and simulation of virtual populations and sampling 

needed when no data are available or included in iterative runs of the WISEPAIR.py script to determine 

threshold values for determining re-samples. 
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WISEPAIR.py 

 The second script was the WISEPAIR.py script, which either imported the standard output of 

BEANBAG.py or user-supplied data in .csv format.  From these imports a full list of all pairwise comparisons 

for every sample was assembled.  The pairwise list was run through a scoring function which compared the 

genotypes of each pair and returned a similarity score.  Initially a raw similarity score (RSS) was determined, 

which is the sum of allelic differences of each pairwise comparisons where a lower score indicated higher 

similarity.  A corrected similarity score (CSS[ ]) was then computed to account for variable number of loci being 

included (as some samples had missing data for certain loci) in the scoring of each pair (CSS = RSS/[# of loci 

used]).  Each CSS was normalized (NCSS) by subtracting the overall CSS mean then dividing by the difference 

of the maximum CSS and minimum CSS: 

𝑁𝐶𝑆𝑆 =
[𝐶𝑆𝑆 − 𝐶𝑆𝑆 ]

𝐶𝑆𝑆𝑚𝑎𝑥 − 𝐶𝑆𝑆𝑚𝑖𝑛
 

When analyzing simulated data from BEANBAG.py, a “virtsim” ID code was included.  This code 

allowed for error-free identification of individuals, even if ADO or FA have introduced discrepancies between 

identical genotypes.  Using these IDs, WISEPAIR.py built a re-sampled threshold range for NCSS.  The 

thresholds are established by using, minimum NCSS (with 95%CI), and maximum NCSS (with 95% CI), for 

the unpaired and re-sampled comparisons respectively.  These ranges are applied later to real-world data sets 

to identify re-sampled individuals.  The simulated NCSS were plotted onto histograms for visual inspection of 

the frequency distribution of re-sampled individuals and distinct, newly sampled individuals.  The 

WISEPAIR.py and BEANBAG.py scripts were used for both the simulations in the following script and to 

determine the re-sample thresholds for this project’s data set. 

OPTIMAGIC.py 

The third and final script used in the program was an optimization script.  This script was developed 

to effectively optimize sampling schemes by iteratively running BEANBAG.py and WISEPAIR.py.  The 
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possible variables included: number of bouts, samples per bout, counts of re-sampled individuals and count of 

times an individual is re-sampled over a season.  Given all the specified variables, OPTIMAGIC.py performed 

simulations of all possible combinations of values or ranges using the previous scripts.  BEANBAG.py and 

WISEPAIR.py iterated each scheme and determined a number of re-samples and non-re-samples, using the 

threshold model.  Following these scheme simulations, all scoring data were parsed and re-sampled individuals 

were counted.  These data were stored in two possible files.  If the simulation met the specified re-sampled 

minimum and the mean number of times an individual is re-sampled then data for that sampling scheme were 

saved within the acceptable sampling file.  If either of the criteria were not met for the simulations, then the 

sample scheme failed and was placed in the unacceptable sampling file.  These data were then used to determine 

the best sample scheme for a given range of criteria. 

Incorporating data into scripts through Cowichan Bay data 

 I used all three scripts to determine the number of individuals re-sampled within my data set.  

BEANBAG.py and WISEPAIR.py were used to produce a threshold “score” (refer to respective script 

methodologies) with which I could compare samples to the actual data set and subsequent simulations in 

OPTIMAGIC.py.  For the WISEPAIR.py script I used error rates determined in PEDANT and calculated 

allele frequencies from my data.  In order to effectively and confidently identify re-sampled individuals, my data 

set was compared (through thresholds from WISEPAIR.py) to simulated schemes under different conditions. 

These conditional simulations in OPTIMAGIC.py included a population based on my data-observed allele 

frequencies, number of alleles, and estimated error rates.  OPTIMAGIC.py was used as a means to iteratively 

run BEANBAG.py and WISEPAIR.py for comparison purposes to my data set.  However, these simulations 

were placed within sampling designs of either all re-sampled individuals or no re-sampled individuals.  The all 

re-sampled individuals simulation included a population of 1,000 with sample limit 5,000 and a bout limit of 5; 

the no re-sampled individuals simulation included a population of 5,000 with sample limit 5,000 and a bout 

limit of 5.  This excessive population size and extreme sampling scheme helped delineate the threshold value 

for my data set’s pairwise allelic comparison.  In conjunction with these extreme criteria, simulations that 
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incorporated more realistic parameters that matched Cowichan Bay were used with the same pipeline (1000 

iterations of population 100 virtual individuals, 150 sample size, and 5 bouts).  This massive iteration simulation 

was averaged from corrected threshold values for each iteration and compiled to determine threshold values 

for identifying isolate re-sampled individuals on my data set. 

Optimizing for future projects using OPTIMAGIC.py 

 The final simulations determined the best sampling scheme for future individual-based genetic tracking 

studies at haul-out sites, such as Cowichan Bay.  From a population of 100 individuals at Cowichan Bay (Olesiuk 

2009), the OPTIMAGIC.py script was run to fit parameters that would include a high-frequency sampling 

effort (20-30 scats at each site during 20-25 bouts).  This high-frequency simulation was used based on the 

assumption that researchers would want to re-sample individuals more frequently (at least 4-6 times per 

individual) than in my study.  Due to permit restrictions for this study, I was unable to use a high frequency 

such as the one in this simulation.  In addition to the high-frequency sampling parameters, I used a population 

of 100 individuals with using an estimate that a random 50% of individuals are absent from the haul out at any 

given time.  Therefore a random 50 individuals are sampled during each bout; with replacement.  While harbor 

seals can be extremely variable in their haul-out patterns based on life history factors (Brown & Mate 1983; 

Yochem et al. 1987; Huber et al. 2001) and can be locally variable (Thompson 1989), a modest estimate of 50% 

of seals hauled out is consistent with the previously observed estimates of harbor seal behavior.  Using this 

scenario, the minimum number of individuals that would be re-sampled was 13/100, and these individuals 

would be sampled a minimum of 4 times or more.  In addition, each scheme was iteratively run three times to 

give minimal stability to the output. 

Results 

Genotyping Individuals and Sex Determination 

 From the 46 scat samples collected I successfully genotyped 32 samples (~70% success rate) through 

at least seven of the nine loci used.  Positive amplification varied among loci from 63% to 93%, with a mean 
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of 79%±SD0.11% for all samples (Table 2).  Samples that either had too little available DNA from extracts (≤ 

5 ng/µL) or more than 2 missing loci from failed PCR reactions were removed from the final data set.  From 

these 32 samples I analyzed loci for number of alleles, allelic richness, expected and observed heterozygosity, 

% successful amplification, and observed base-pair lengths (Table 2).  All loci were polymorphic within the data 

set, however two loci (SGPv10 and M11) had moderate observed polymorphism with only 3 and 4 alleles 

respectively.  Mean heterozygosity for the entire dataset was 0.76±SD0.19. 

Loci did not deviate significantly from Hardy-Weinberg equilibrium, except Pv11, which had a 

heterozygote excess in observed heterozygosity as compared to expected (Table 2).  With the allele frequencies 

observed in this study, I calculated the total observed probability of identity (sib) for all loci in this study as 

2.78*10-2, which indicates that about 1 in every 36 full siblings are expected to share, by chance, an identical 

genotype.  In addition, the probability of identity was 6.06*10-10 for non-sibling probability (Table 2). 

 For sex determination, I identified 11 female samples and 30 male samples.  Five samples failed 

consistently to amplify and were not used for this study.  The proportion of positive amplifications was 89%, 

not including the consistent amplification of all control scat samples of known males and females.  Of the 41 

positive samples, only the 32 samples that were successfully genotyped were used as a complete genetic tag 

including gender.  However, the observed sex ratio of the haul-out during the sampling period should still be 

considered as roughly 3 males to a single female at Cowichan Bay. 

Estimated Genotyping Error 

 Using the re-genotyped samples through PEDANT to estimate error rates I determined false alleles 

and allelic dropout rates for each locus (Table 2).  The rates were not homogenous across loci and the loci with 

more alleles were the most informative due to PEDANT’s ability to actually determine the error rates when 

more alleles were present.  With the variety of rates per locus (ADOmin=0.00, ADOmax=0.21, FAmin=0.00, 

FAmax=0.25) the overall rates of mean allelic dropout per genotype across all loci were 6%±SD7% and false 

alleles across all loci were 12%±SD9%.  The locus that was most problematic was Lc26 which had the highest 

estimate error rates for both ADO and FA.  This result could be attributed to the high FA rate as this introduced 
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more observed alleles into the pairwise comparisons.  During the re-runs of FA, there were FA in all 6 repeated 

samples, with at least 2 having multiple false alleles (Appendix).  While these false alleles this would not affect 

the FA rate as PEDANT does estimate this value on the whole, it may affect how simulations handle FA rates. 

Individual Identification via Matching Thresholds 

 Simulation of non-re-sampled individuals resulted in a corrected threshold value of -0.353 with normal 

distribution (Figure 4).  With all re-sampled individuals there was a significant tail at the threshold value of -

0.412, with only a small proportion of samples reaching that limit (Figure 5).  These two simulations were the 

basis for the threshold determination for Figure 6, which is applied to the sample data from my study.  Based 

on these simulations of all re-sampled and not re-sampled individuals the threshold value identified 11 

individuals that were re-sampled at least 1 time (Figure 6).  Even with the extreme simulation parameters (all 

re-sample and no re-samples) and large population/sample size, simulations to determine threshold may need 

to incorporate more conservative estimates, to avoid type II error.  An advantage to my small data set is being 

able to identify pairwise comparisons without the use of the scripts.  Using this method instead of 

WISEPAIR.py and OTPIMAGIC shows that the 11 re-sampled individuals are isolate individuals.  However, 

it is important to note that manual pairwise comparisons cannot incorporate genotype error, but can determine 

the number of allelic differences between samples. 

 Simulations included 1,000 iterations of a sampling design with a population size of 100 virtual 

individuals, 150 DNA samples, and 5 bouts.  Through the model statistics described in the methods section, 

the threshold range was -0.542 in the lower bounds and -0.173 in the upper bounds.  Examples of the 

simulations and their iteration patterns that built this threshold range are depicted in Figure 7.  From these 

iterations the threshold value for my data set was the lower bound of the simulations, -0.173.  This threshold 

value included two sets that were identified as a two recaptures (Pv14-28/Pv14-43 and Pv14-31/Pv14-33) 

(Figure 8).  Based on this more conservative simulation, my study was able to match two sets of samples, to 

identify a recapture of two individuals. 
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OPTIMAGIC.py Results 

 Due to the limited number of individuals that were re-sampled, it was informative to determine the 

optimum sampling design for my system.  Based on the parameters for an optimal sampling scheme (100 

individuals with high frequency sampling of 20-30 samples per bout per 20-25 bouts), there were 5 different 

optimal schemes that would work in my system.  The optimum schemes ranged from a minimum sample size 

of 690 samples over 23 bouts (30 samples per bout) to a maximum sample size of 750 samples over 25 bouts 

(30 samples per bout) (Figure 9).  Optima visualized by bout number are represented in Figure 10.  For the 

minimum optimum scheme, there were a total of 26 individuals that were re-sampled, with 13 that were re-

sampled at least 4 times (mean count of re-samples per individual=5.66).  For the maximum sample size, there 

were 34.67 re-sampled individuals with at least 23 individuals re-sampled a minimum of 8 times (mean count 

of re-samples per individual=5.81).  These fluctuations of optimal sampling schemes were dictated by the range 

of bouts used (20-25) and the number of samples that could be taken per bout (20-30).  There are 169 optimal 

schemes from the total data set that met the criteria to for count of re-samples per individual but did not meet 

the number of total individuals that meet that standard (13); these are yellow circle data points in Figure 9.  

Discussion 

While non-invasive genetic tracking has been a promising technique for researchers in wildlife science, 

the specific challenges and lack of empirical evidence leaves opportunities for methodological advancement 

(Beja-Pereira et al. 2009).  With increased availability of technologies and the need for a well-planned 

experimental design (Schwartz & Monfort 2008, p 240; Hoban 2014), an empirical study examining the 

advantages and disadvantages of individual tracking in the wild is pertinent for the progression of this research.  

This is the first study to address the methodological considerations to non-invasive genetic tracking of harbor 

seals and develop an experimental design software specific for genetic tracking for individual-based studies in 

any taxa. 

Results from this study show success in determining gender and identifying individuals through DNA 

sourced from scat samples.  With considerable success in positive amplification (Table 2) as well as 89% success 
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in sex determination, my study shows a promising technique in our ability to obtain a reliable source of DNA 

through non-invasive means in harbor seals; especially as a technique that can be applied to species with site 

fidelity (haul-outs, wintering grounds, breeding grounds, etc.).  The success in both microsatellite positive 

amplification (79%) and sex determination (89%) is consistent or higher than much of the literature regarding 

pinniped scats.  Reed et al. (1997) observed 85% positive PCR results for harbor seal scats, however this value 

is only based in positive amplification for at least one microsatellite; for all microsatellites (5 total loci), they 

observed only 19.1% positive results.  In ringed seals, using shed skin as a non-invasive sample, Swanson et al. 

(2006) observed 72% positive amplification in 6 microsatellite loci.  With nine microsatellites used in this study, 

my positive amplification rate shows a highly reliable method to obtain quality DNA from non-invasive sources.  

With regard to sex determination, my results are consistent with Matejusová et al. (2013) as they observed 90% 

success with gray and harbor seal sex identification.  Other examples of using ZFX/ZFY in pinnipeds 

[Crabeater (Lobodon carcinophaga), Ross (Ommatophoca rossii), and Weddell (Leptonychotes weddellii) seals] showed 

80% success rate across species, however samples were from skin biopsies; a more invasive sampling 

methodology.  One study using scat in harbor seals through an SRY gene specific sex determination observed 

only 44.5% successful identification (London 2006), supporting the effectiveness of a qPCR ZFX/ZFY-based 

assay.  With the ranges of positive amplification success rates and variable number of markers, it is imperative 

that future studies adhere to a specific sampling and extraction method to ensure quality target DNA.  In my 

study, swabbing proved to be quite successful in amplification success for both individual identification and 

sex determination. 

Pv11 was the only locus to deviate from Hardy-Weinberg equilibrium.  This deviation may be attributed 

to small sample size/population size, as there were no errors detected with this locus (Table 2). If there was 

consistent deviations across loci that would indicate population substructure or some form of relatedness 

among samples (Allendorf & Luikart 2007).  It would be advantageous in future studies to consistently test this 

locus to ensure that there is no genotyping error associated with this result.  The PI (sibs) observed in this study 

was reasonable with reference to harbor seal mating strategies.  While there are little data on the mating systems 

of harbor seals, there is some genetic evidence of levels of polygamy in harbor seals (Hayes et al. 2006).  
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Importantly, PI (non-sibs) was well below (6.06*10-10) any measure to ensure isolate individuals do not share similar 

genotypes, which may indicate that PI (sibs) is over conservative for my study.  While PI(sibs) may be an advantage 

in some systems, the discrepancies due to a dichotomy between my observed PI(non-sibs) and PI(sibs) may be a 

result of the number of samples in this study.  Conversely, this discrepancy indicates that while PI(sibs) may be 

high, my observed PI(non-sibs) can be a confident measure of identity. 

The sex-determination assay proved valuable with even in the most degraded fecal samples (<5 ng/µL 

of gDNA).  With the potential pitfalls of sample collection in non-invasive samples, such as DNA degradation 

and sample preservation, qPCR provides an advantageous tool that is a more sensitive and precise assay as 

compared to more traditional molecular assays (PCR amplification of sex – linked ZFX/ZFY and SRY genes, 

as shown in Shaw et al. (2003) and Reed et al. (1997) respectively).   My study supports Matejusová et al. (2013) 

assay’s effectiveness in their sex-determination method using DNA from scat.  However, scat is not the only 

potential source of DNA at harbor seal haul-out sites.  As a mammal, harbor seals also leave hair samples which 

can be a means for individual tracking if an effective methodology is applied (DeYoung & Honeycutt 2005).  

Future studies could investigate the use of hair snares at haul-out sites as another indirect means for identifying 

individuals, as performed in many terrestrial species and some aquatic mammals, such as otters (Beier et al. 

2005; Depue & Ben-David 2007).  The use of hairs may become more prevalent in non-invasive studies given 

the advancements in single-sample non-invasive hair-snare systems (Bremner-Harrison et al. 2006).  In the case 

of dietary studies, scat would still be the most advantageous sample type as it can be used genetically for both 

individual identification and diet analysis (Thomas et al. 2014). 

For the non-re-sampled and all re-sampled simulations, the combination of the Figures 4 and 5 into 

Figure 6 showed a clear representation of the binomial distribution expected when trying to match genotypes 

(McKelvey & Schwartz 2004).  However, even with a binomial distribution of pairwise comparisons, the 

threshold value for determining matching individuals may not be conservative enough for individual 

identification.  The number of allelic differences a researcher will allow to determine a match may dictate the 

threshold accepted in a study.  It would be important in future studies, if cost is not prohibitive, to increase the 

number of loci used in the study.  This will allow for strengthened confidence in identifying re-samples and 
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provide researchers with potentially more informative loci in genetic analyses.  For my study, it was imperative 

not to commit a type II error, which would accept a matched individual when they are actually isolate 

individuals.  Based on by-hand pairwise comparison, the raw number of allelic differences between simulated 

potential matched samples was greater than four, therefore it was important to run simulations that were more 

stringent.  This larger number of allelic differences could be attributed to differences in frequencies of pairwise 

comparisons (Figures 4 and 5) that are vastly different in totals.  The corrected threshold values are not relatable 

and when the simulations attempt to ID matches the threshold is too broad to correctly assign isolate 

individuals.  Another explanation for failing to predict matching individuals is that while the simulation was 

based on observed allele frequencies, the conditions in which the population was built was based in an 

unrealistic sampling scheme (5000 samples over 5-sampling periods). The model itself was not developed to 

handle these types of schemes.  To effectively address this inability to handle large populations and sampling 

schemes, it would be advantageous to build a null hypothesis for the program that would represent a method 

to detect differences among individuals.  This alternative simulation may not incorporate extreme samples or 

population sizes, but rather extreme probability results within realistic sampling parameters.  Specifically, this 

would be fitting an all re-sampling simulation and a no-resampling simulation yet match the number of pairwise 

comparisons as the real world data set.  Another potential option would be to simulate pairwise comparisons 

with no genotyping error with large population sizes while also simulating large population sizes with observed 

genotyping error.  Using the difference in threshold, under the assumption that even no genotyping error may 

mismatch by chance, this would provide a conservative threshold range for use on real world data.  Future 

efforts will be in model development will be enhancing the script to appropriately handle large 

populations/sampling schemes for a null hypothesis. 

Simulations that incorporated more stringent parameters and were run iteratively proved to be the 

most informative threshold for my data set (Figure 7).  The simulations provided an acceptable number of 

allelic differences that would be an informative threshold.  For individual identification, I successfully tracked 

two individuals within our data set with our method to determine individuals.  The variety of different 

simulations used allowed for an accurate representation of the difference in threshold values.  It would be 
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beneficial in future studies to use recapture rates as a means to extrapolate out recaptures based on number of 

samples.  While this study highlights optimum sampling schemes, the recapture rates are based on simulated 

populations that have assumptions on sample success/failure rates and therefore cannot buffer these rates into 

simulations.  The present simulations would benefit from an included recapture rate from empirical data, 

potentially through studies specifically addressing this assumption. 

The two instances of re-sampled individual were not sufficient for tracking harbor seals in instances of 

parsing individual differences within a population.  This finding was most likely a result of a small sample size 

within my data set.  Given logistical constraints I was unable to increase the number of sampling bouts.  

Previous studies have noted the number of samples needed in non-invasive studies with some recommending 

2.5-3 times the number of fecal samples as the number of animals expected to be sampled (Solberg et al. 2006; 

Marucco et al. 2011).  This number for fecal samples is based on 20-30% of samples unable to be genotyped.  

With this argument, the number of samples needed to effectively track 100 harbor seals at Cowichan Bay would 

be 250-300 samples.  However, suggested samples size is usually based on capture-recapture studies for 

population estimation where is not necessary to have a multiple recaptures per individual.  This general 

estimation it is not consistent with the OPTIMAGIC.py output which recommended, at minimum, 690 samples 

to effectively track at least 13 individuals in a population of 100 seals at Cowichan Bay (assuming 50% are 

absent at any given sampling period).  Much of the previous literature uses assumptions for the estimates that 

fail to incorporate the facets of sampling design for a successful non-invasive study, namely genotyping error 

which can affect a project’s ability to match individual genotypes (Taberlet & Luikart 1999). 

OPTIMAGIC.py provides a starting point for researchers to determine how many samples they would 

need to effectively track individuals in an individual-based studies.  This model incorporates criteria such as 

genotyping error, number of re-samples, and number of times an individual will be re-sampled that are 

important parameters for projects attempting to genetically track individuals in the wild.  The range of 

OPTIMAGIC.py optimal schemes (see Results), highlights the power of the model and the variety of schemes 

that can work for researchers in a given question.  It is unclear whether any one of the 5 schemes would be the 

“best” option for my particular system.  The fluctuations optima are related to the combinations of bouts and 
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sample sizes that dictate changes to whether or not it will meet an optimum.  With the pseudo-random nature 

of some of the algorithms as stated in the methods, there will be events in the simulations that create 

fluctuations of optimal schemes.  The advantage to OPTIMAGIC.py is that researchers can choose from the 

data set and re-run OPTIMAGIC.py iteratively under one scheme.  This output could give better insights into 

the whether or not an individual scheme matches the researchers’ guidelines.  For example, in my study, the 

cost per sample was a concern due to logistics and therefore it may be advantageous to use the smallest sample 

size possible from the OPTIMAGIC.py results.  With this research limitation the smallest samples size to ensure 

I could re-sample individuals effectively would be 690 samples over 23 bouts (30 samples per bout).  It is 

important to note that 20-30 visits to a haul out site could be deemed invasive on harbor seals due to repeated 

harassment (Suryan & Harvey 1999).  While typically genetic samples have been obtained through capturing an 

animal (tissue and blood), scat still serves as a minimally invasive option; even with disturbing a haul-out site.  

The advantage to OPTIMAGIC.py is its ability to use previous data to estimate sampling schemes a priori for 

potential future studies of individual tracking.  The input parameters can be extensive for which researchers 

choose to use, including effective sampling population size, genotyping error rates, % present, number of 

individual samples and how many instances they are sampled. 

There are some assumptions included in the pipeline described in simulation figures 4-10 that should 

be addressed in future studies.  One is the assumptions that all samples are of the same quality (for scat, 

freshness based on time since defecation).  There has been some work in the literature to determine the DNA 

degradation rates of scats in the field (Piggott 2005; Murphy et al. 2007; Brinkman et al. 2010).  A recent study 

investigating fecal deposition rates and DNA degradation to optimize sampling scheme in Sonoran pronghorn 

(Antilocapra Americana sonoriensis) determined that a sampling interval of 4-7 days under summer conditions 

proved most advantageous (Woodruff et al. 2014).  However these rates may be site- or species-specific and 

would be important for future studies with samples in marine environments to assess the percent of degradation 

affecting the number of samples needed.  This assessment would allow OPTIMAGIC.py to appropriately 

buffer for these samples that may fail in the field.  However, if not applicable in the OPTIMAGIC.py program, 

future studies should plan to buffer for these failed samples regardless.  In addition, microsatellites have high 
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mutation rates (Ellegren 2000) and it may be of importance to include estimating these rates into the building 

of virtual genotypes.  There are studies that have estimated mutation rates, starting from the simplest model of 

stepwise mutation model (Ohta & Kimura 1973) that uses the length of repeat units moves one unit (both 

expanding and contracting) to more recent models (Whittaker et al. 2003) that use likelihood based models.  

Another assumption is this study stated that a false allele would be treated as another allele.  However, in real 

data sets, a false allele can range in base pair length depending on how many false alleles are present within a 

locus.  For instance, locus Lc26 was observed to have the highest false allele rate (Table 2) and in the current 

simulation this the false alleles present would be pooled together and represented as a single error instance.  

Through analysis of the re-run data set there are potentially differences in allele scores from 2 base pairs up to 

16 base pairs, all incorporating six new alleles that may be deemed a false allele.  However, the rate at which 

these new alleles are presented, or rather the likelihood that one false allele may be present is unknown.  This 

assumption can overinflate the number of false alleles present and potentially hide matching genotypes in a 

data set or simulation. 

Such as the aforementioned assumptions, there must be consideration when working with non-invasive 

samples in genotyping error and its effect on determining individuals.  While my study addressed genotyping 

error, it is imperative that future studies continue to redefine the issues associated with genotyping error 

(Taberlet & Luikart 1999; Waits et al. 2001; Pompanon et al. 2005).  For future studies, I stress the importance 

of a well-developed molecular control system (such as known control and a gender determination assay) and a 

modest number of repeat PCRs of samples.  This will greatly reduce the potential for fluctuating errors among 

loci, samples, and future studies that intend to compare empirical data.  It is also important to highlight the 

sampling methodology used for fecal sampling as this can drastically affect DNA quality for downstream 

analysis (Lampa et al. 2008; Rutledge et al. 2009).  My method using a sterile swab to target sloughed epithelial 

cells improved my lab amplification success and quality of DNA, which can further mitigate the issues with 

genotyping error. 

Non-invasive genetic tracking for individual based studies has shown some signs of traction in the 

literature, notably in amphibians (Ringler et al. 2014) and fish (Andreou et al. 2012), yet the application of these 
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tools has yet to be fully appreciated.  While there are a multitude of questions that come from individual-level 

data, the species specific methodological considerations are imperative to a successful project.  My study 

successfully highlighted laboratory and sampling design considerations for harbor seals that may be applicable 

to taxa in which researchers can reliable obtain genetic samples in high frequency.  Specifically in species with 

some fidelity to a location (haul-outs, latrines, breeding grounds, etc.), the ability to apply this technique can be 

highly successful for genetic tracking.  The complexities of tracking these species come from developing an 

adequate workflow to mitigate the many pitfalls associated with non-invasive genetics while securing a sampling 

scheme that aligns with researchers’ project objectives.  This study provided an alternative path to either a full 

re-run approach or a solely statistical approach to matching individuals.  Based on cost and logistics, it is 

important that future studies identify the tradeoffs among differing methods and apply the most robust 

techniques and available tools to address matching genotyping and errors associated.  Nevertheless, this hybrid 

approach allowed for minimal sacrifice in the available methods as it incorporated sample re-run, allelic pairwise 

comparisons, and probabilistic simulations to determine matching thresholds.  This study effectively developed 

a computer program tool that researchers can use for projects in individual genetic tracking by optimizing 

sample size through incorporating effective sampling population size, genetic error rates, and non-invasive 

sampling (sampling with replacement).  With the combined results of this study, researchers can expect to 

develop more robust data sets that capture differences among individuals while addressing logistical and 

financial concern that can lead to prohibitive research methodologies.  As reiterated in much of literature 

(Palsbøll 1999; Taberlet & Luikart 1999; Valiere et al. 2007) a pilot study is critical to the success of these 

methods.  Future studies can use the Python-based scheme to develop a priori a sampling design to conduct 

individual-based studies on any taxa.  In addition, researchers can follow my lab procedures to genetically track 

individual harbor seals to study ecological traits, such as the diet of individuals.  
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Tables and Figures 

 

Figure 1.  Cowichan Bay, the study site on Vancouver Island, BC.  The log booms where samples were collected are 
located north of Cowichan Bay Marina, and are indicated with a highlighted rectangle in the figure 

 

Cowichan Bay 
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Locus A° Conditions Master Mix Primer Source 

HI15 52 1 cycle initial of 94° (3 mins), 52° (1 min), 72°(1 min) ; 38 cycles of  
denaturation at 94° (1 min), annealing temperature (1 min),  extension at 72° (1 

min);  Final extension at 72° (10 mins) 

GoTaq®Colorless Davis et al. 
(2002) 

LW20 52 1 cycle initial of 94° (3 mins), 52° (1 min), 72°(1 min) ; 38 cycles of  
denaturation at 94° (1 min), annealing temperature , extension at 72° (1 min);  

Final extension at 72° (10 mins) 

GoTaq®Colorless Davis et al. 
(2002) 

TBPv2 48/51 Initial of 94° (2 mins); 11 cycles of  denaturation at 94° (1 min),  lower 
annealing temperature (1 min) , extension at 72° (1 min); 27 cycles of 
denaturation at 94° (1 min),  higher annealing temperature with 0.1° 

touchdown (1 min), extension at 72° (1 min);  final extension  at 72°  (7 mins) 

GoTaq®Colorless Burg (1996) 

M11 48/52 Initial of 94° (5 mins); 12 cycles of denaturation at 94° (1 min), lower annealing 
temperature (1 min), extension at 72° (1 min); 25 cycles of denaturation at 94° 
(1 min), higher annealing temperature (1 min);  final extension  at 72°  (7 mins) 

GoTaq®Colorless Gemmell et al. 
(1997) 

SGPv10 55 Initial of 94° (2 mins); 40 cycles of denaturation at 94° (15 sec), annealing 
temperature (15 sec), extension at 72° (15 sec); final extension at 72° (7:00 

min) 

KAPA2G Robust Burg (1996) 

Lc5 55 See above KAPA2G Robust Davis et al. 
(2002) 

Lc26 59 See above KAPA2G Robust Davis et al. 
(2002) 

Pv11 59 See above KAPA2G Robust Gemmell et al. 
(1997) 

BG 59 See above KAPA2G Robust (Burg (1996)) 

 

Table 1.  Loci of nine microsatellites used in this study.  Each locus has its corresponding cycling conditions for PCR optimization before fragment analysis.  Primer 
sequence sources are also listed. 
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Figure 2.  A workflow for non-invasive individual identification of harbor seals (Phoca vitulina) using scat swab samples.  This methodology could be applied to other 
species, especially those that spend some time on land (semi-aquatic species).  Multiple collection trips allow for genetic tagging of individuals 
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Locus No. of Alleles BP Range % + PCR Hexp Hobs Prob(sib) 
ADO per 
genotype 

rate 

FA per 
genotype rate 

HI15 9 119-139 93% 0.79 0.84 1.24*10-1 0.05 0.11 

Lc5 5 160-168 65% 0.65 0.50 5.84*10-2 0.01 0.24 

Lc26 9 305-327 83% 0.80 0.66 2.15*10-2 0.21 0.25 

M11 4 145-151 83% 0.69 0.88 9.60*10-3 0.00 0.13 

SGPv10 3 129-133 89% 0.48 0.47 5.70*10-3 0.10 0.11 

TBPv2 11 234-256 63% 0.86 0.81 1.90*10-3 0.00 0.10 

Pv11 8 154-168 80% 0.72 0.97* 8.00*10-4 0.00 0.00 

BG 7 283-310 76% 0.79 0.91 3.00*10-4 0.10 0.00 

Mean 7 N/A 79%±0.11 0.72±0.12 0.76±0.19 2.78*10-2† 0.06±0.07 0.12±0.09 
 

Table 2  Loci and their corresponding number of alleles, percentage of positive PCRs per locus (% + PCR), expected and observed heterozygosities, probability of 
identity for siblings, allelic dropout and false allele rates estimated from PEDANT.  Mean values reported for respective parameters, as well as allelic richness for all nine 
loci.  Mean values are ± standard deviation.  Percentage of positive PCRs are from samples that successfully amplified in at least 7 of 9 loci.  *Significant deviation 
(p<0.05) when Hardy-Weinberg equilibrium test was conducted; for locus Pv11, χ2 (3, N=31) p=0.00 using CERVUS (Kalinowski et al. 2007).  †Probability of identity 
(sib) is a total value, probability of identity (non-sib) total = 6.06*10-10. 
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Figure 3.  A workflow of a Python script to simulate a non-invasive sampling design with either input data from user 
supplied or virtual gene pool.  Grey boxes highlight important scripts used in the pipeline.  Virtual sampling incorporates 
allelic dropout and false allele rates through PEDANT.  OPTIMAGIC.py can be run for determining optimal sampling 
schemes using BEANBAG.py and WISEPAIR.py iteratively. 
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Figure 4.  Histogram of WISEPAIR.py simulation of 5,000 individuals with 5,000 total samples over 5 sampling bouts.  
The blue bars show that or: none of the pairwise comparisons consisted of re-samples.  The blue dotted line represents 
95% confidence interval at -0.353.  Frequency corresponds to pairwise comparison of individual genotypes that were 
binned into corresponding corrected scores.  The virtual population was created based on this study’s observed allelic 
frequencies and estimated error rates. 
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Figure 5.  Histogram of WISEPAIR.py simulation of 1,000 individuals with 5,000 total samples over 5 sampling bouts. 
The red bars show that all pairwise comparisons consisted of all re-sampled individuals.  The red dotted line represents 
95% confidence interval at -0.412.  The lower bound of the distribution shows the likelihood that those comparisons 
incorporate genotyping error into the simulations as they may be non-re-sampled genotypes.  The virtual population was 
created based on this study’s observed allelic frequencies and estimated error rates, with the exception that the simulation 
would include all re-samples. 
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Figure 6.  Histogram incorporating the upper and lower bound thresholds from simulations of Figure 4 and 5 to Cowichan 
Bay pairwise data set.  The range of the threshold incorporated 11 individuals, shown in red that are re-sampled (some 
samples multiple times) under these conditions.  The area between the two threshold bounds (shown in green) is 
interpreted as pairwise comparisons that have no ambiguity in assigning non-re-sampled comparisons from isolate, re-
sampled comparisons. 
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Figure 7.  Example of one iteration from 1,000 simulations of a population of 100 individuals with 150 samples over 5 

sampling bouts.  Unlike what is depicted in Figure 6, the area between threshold bounds incorporates pairwise comparisons 

that have some ambiguity (overlapping 95% confidence intervals) that include possible matches or isolated individuals.  In 

the case of my study, these are not included to be certain on individual genotyping calls.  
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Figure 8.  Based on 1,000 iterative simulations to determine threshold values for re-sampled individuals, the bounds of the corrected score were included in the histogram 
of pairwise.  Based on the lower bound threshold, the simulations determined that there were two pairs of samples that were identified as re-sampled individuals (1) 
Pv14-28 and Pv14-43 and (2) Pv14-31 and Pv14-33, which are shown in the second graph of number of individual re-sampled 
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Figure 9.  OPTIMAGIC.py optimal sampling schemes for a population of 100 individuals with a random 50% absent at 
any given bout.  Criteria included a sampling effort of 20-30 scats for each visit for 20-25 bouts.  Dotted line represents 
the minimum number of re-sampled individuals (13) sampled at least 4 times.  Each scheme was iterated three times.  Data 
points above dotted lines represent schemes that met both criteria of re-sampled counts (RSC) and number of individuals 
re-sampled (RS), in green.  Yellow circles only met one of the criteria and red dots represent schemes that met none of 
the conditions.  There were 5 schemes that met the input criteria that ranged in sample sizes of 690-750 total samples. 
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Figure 10.  Trace of optima based on number of bouts.  Criteria included a population of 50 individuals with a sampling 
effort of 20-30 scats for each visit for 20-25 bouts.  Vertical lines at end of each line correspond to the maximum number 
of samples for the respective bout number.  Figure 9 depicts the individual schemes.  Legend matches line color to number 
of bouts. 
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Appendix 

 

A1. Microsatellite raw data for 9 loci used in analysis 

Sample LW20 LW20 HI15 HI15 Lc5 Lc5 Lc26 Lc26 M11 M11 SGPv10 SGPv10 TBPv2 TBPv2 Pv11 Pv11 BG BG

Pv14-01 122 130 122 130 164 164 313 313 149 149 131 131 247 247 0 0 305 305

Pv14-02 126 140 122 122 164 166 315 317 151 151 131 133 232 252 155 155 299 299

Pv14-03 128 134 122 142 0 0 307 315 145 147 131 133 252 252 160 162 284 305

Pv14-04 126 130 120 122 164 166 307 319 149 149 131 133 250 250 166 166 294 294

Pv14-05 124 124 130 142 164 164 307 315 145 149 131 133 0 0 160 160 0 0

Pv14-07 126 136 120 122 164 166 307 319 147 149 131 133 247 256 162 162 305 310

Pv14-08 134 140 120 122 164 164 307 307 149 151 133 133 240 240 156 162 294 299

Pv14-09 124 142 124 130 164 164 307 307 149 149 131 133 254 254 162 162 0 0

Pv14-10 0 0 120 128 166 166 307 317 149 149 131 133 250 250 155 155 284 299

Pv14-12 124 134 122 122 164 166 307 319 147 149 131 131 232 256 162 162 304 310

Pv14-13 116 116 120 122 164 164 307 317 147 149 131 133 244 252 160 160 299 310

Pv14-16 124 140 105 122 164 166 323 323 149 149 133 133 244 254 162 162 294 305

Pv14-17 134 140 124 124 164 166 307 317 149 149 133 133 244 252 160 168 284 299

Pv14-18 132 132 122 122 164 166 307 317 147 151 133 133 250 250 160 160 310 310

Pv14-19 132 134 122 142 0 0 307 315 147 151 133 133 244 254 162 162 294 305

Pv14-22 126 128 0 0 164 166 305 319 147 151 131 131 246 246 160 160 299 305

Pv14-23 124 126 122 122 0 0 315 327 147 147 131 131 240 240 162 162 305 310

Pv14-24 124 126 122 122 166 166 317 317 149 149 131 131 250 250 160 160 0 0

Pv14-25 128 130 130 130 164 166 307 307 0 0 131 133 0 0 160 160 299 305

Pv14-27 126 130 122 130 0 0 307 317 149 149 131 131 0 0 162 162 0 0

Pv14-28 130 132 122 122 166 168 317 321 147 149 131 131 0 0 162 162 299 310

Pv14-30 124 124 122 130 164 166 319 319 0 0 131 131 250 250 160 160 299 305

Pv14-31 124 126 122 130 166 168 307 315 145 151 131 131 250 250 162 162 299 310

Pv14-33 126 126 122 130 166 166 307 315 151 151 131 131 244 244 162 162 299 310

Pv14-34 130 132 122 122 0 0 321 321 149 149 133 133 0 0 0 0 310 310

Pv14-35 126 140 122 132 164 168 317 319 149 149 131 131 0 0 160 160 284 299

Pv14-38 124 126 124 124 0 0 323 323 147 147 129 131 250 250 160 160 305 305

Pv14-39 0 0 122 122 168 168 317 317 0 0 131 131 250 250 162 162 284 284

Pv14-43 0 0 132 132 168 168 317 321 149 149 131 131 234 250 160 160 299 310

Pv14-44 130 132 122 122 166 168 307 319 147 149 133 133 252 252 154 160 299 305

Pv14-45 124 126 122 130 0 0 317 317 147 159 131 131 250 250 160 166 294 294

Pv14-46 128 130 130 130 160 164 317 319 149 149 133 133 250 250 160 160 284 284
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A2. Microsatellite re-run raw data for 9 loci.  Estimates for genotyping error rates determined using PEDANT software 

 

 

 

 

 

 

 

Sample HI15 HI15 Lc5 Lc5 Lc26 Lc26 M11 M11 SGPv10 SGPv10 TBPv2 TBPv2 Pv11 Pv11 BG BG

Pv14_01_1 123 129 162 164 313 313 147 149 129 131 246 248 0 0 299 305

Pv14_10_1 121 123 166 166 307 317 149 151 131 133 248 250 154 156 284 299

Pv14_12_1 121 123 164 166 307 319 147 149 131 131 254 256 160 162 305 310

Pv14_16_1 121 121 164 166 323 323 147 149 131 133 244 254 160 162 293 305

Pv14_23_1 121 123 0 0 315 327 145 147 131 131 238 240 160 162 305 310

Pv14_27_1 123 131 0 0 307 317 149 149 131 131 0 0 160 162 299 305

Pv14_01_2 123 129 164 166 315 317 0 0 129 131 248 250 154 156 299 305

Pv14_10_2 123 131 164 166 317 319 149 151 131 133 248 250 154 156 284 284

Pv14_12_2 121 123 164 166 307 319 147 149 131 133 246 256 160 162 305 310

Pv14_16_2 121 123 164 166 307 321 147 149 131 133 244 254 160 162 293 305

Pv14_23_2 121 123 164 166 313 315 147 151 129 131 240 254 160 162 0 0

Pv14_27_2 129 131 166 168 305 307 0 0 0 0 240 252 160 162 299 305



44 
 

 

A3. Gender determination results for all samples.  “M” represents male, “F’ represents female, “N/A” unable to be determined through 4 
repeat runs of qPCR assay. 

Sample Gender

Pv14-01 M

Pv14-02 M

Pv14-03 M

Pv14-04 F

Pv14-05 M

Pv14-06 M

Pv14-07 F

Pv14-08 M

Pv14-09 M

Pv14-10 F

Pv14-11 N/A

Pv14-12 F

Pv14-13 M

Pv14-14 M

Pv14-15 F

Pv14-16 M

Pv14-17 M

Pv14-18 F

Pv14-19 M

Pv14-20 N/A

Pv14-21 N/A

Pv14-22 M

Pv14-23 M

Pv14-24 M

Pv14-25 M

Pv14-26 M

Pv14-27 M

Pv14-28 M

Pv14-29 M

Pv14-30 F

Pv14-31 F

Pv14-32 N/A

Pv14-33 F

Pv14-34 M

Pv14-35 F

Pv14-36 M

Pv14-37 M

Pv14-38 M

Pv14-39 F

Pv14-40 N/A

Pv14-41 M

Pv14-42 M

Pv14-43 M

Pv14-44 M

Pv14-45 M

Pv14-46 M
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